The Role of Titanium in Hydrogen Storage

Sep 02, 2005

As part of ongoing research to make hydrogen a mainstream source of clean, renewable energy, scientists from the U.S. Department of Energy's Brookhaven National Laboratory have determined how titanium atoms help hydrogen atoms attach to an aluminum surface. Their study isolates the role of titanium, which is used as a catalyst in the crucial first step to trap hydrogen within a particular class of hydrogen-storage materials. The work may also help identify and develop similar hydrogen-storage systems.

Brookhaven chemist Santanu Chaudhuri presented this research at the 230th national meeting of the American Chemical Society in Washington, D.C.

To be a mainstream source of fuel, hydrogen must be stored safely and efficiently. Conventional high-pressure storage tanks can be dangerous and are too big and heavy for certain applications, such as hydrogen-based fuel cells in automobiles. Hydrogen-storage materials, however, incorporate hydrogen safely and compactly, and temporarily hold large quantities of it that can be recovered easily under safe, controlled conditions.

"A hydrogen-storage material must be able to store hydrogen quickly under 'normal' conditions -- that is, without very high temperatures and pressures," said Chaudhuri. "In tiny amounts, an appropriate catalyst, such as titanium, can speed up the reaction and make the hydrogen-storage process suitable for practical applications. Our study has helped us better understand the role of these catalysts."

Through this research, Chaudhuri and his collaborator, Brookhaven chemist James Muckerman, hope to improve the performance of sodium alanate, a hydrogen-storage material composed of sodium and aluminum hydride. Sodium alanate, known as a "complex metal hydride," expels hydrogen gas (the fuel) and aluminum when heated, leaving a mixture of sodium hydride and metallic aluminum. But because neither aluminum nor sodium hydride absorb hydrogen well, putting the hydrogen back in -- to reform sodium alanate and allow reuse of the material -- becomes difficult.

"We found that aluminum absorbs significantly more hydrogen -- and does so more quickly and at lower temperatures -- when a small number of titanium atoms are incorporated into its surface," Chaudhuri said.

Chaudhuri and Muckerman created a computer model that provides a plausible mechanism of the reaction. Their model agrees with an experimental x-ray absorption study of sodium alanate, performed at the National Synchrotron Light Source, a facility at Brookhaven that produces x-ray, ultraviolet, and infrared light for research.

Chaudhuri and Muckerman's collaborators at Brookhaven used x-rays to "see" and thus calculate how the titanium atoms subtly changed the atomic-level structure of the aluminum, resulting in a more hydrogen-absorbent surface. Results from these two studies agree on the role of titanium atoms on an aluminum surface and mechanisms of subsequent steps in hydrogen capture.

In the future, Chaudhuri and Muckerman's group plans to study the subsequent steps in the sodium alanate hydrogen-storage process, in which aluminum and hydrogen react with sodium hydride to reform the starting material.

This research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

Source: Brookhaven National Laboratory

Explore further: Exploring X-ray phase tomography with synchrotron radiation

add to favorites email to friend print save as pdf

Related Stories

New aluminum alloy stores hydrogen

Nov 05, 2013

We use aluminum to make planes lightweight, store sodas in recyclable containers, keep the walls of our homes energy efficient and ensure that the Thanksgiving turkey is cooked to perfection. Now, thanks ...

Elements of ExoPlanets

Feb 02, 2012

By looking at the wavelengths of light from nearby stars, researchers have determined the abundance of certain elements for more than a hundred stars. Trace elements in such stars may influence their habitable ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

4 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

4 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

5 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Quantum holograms as atomic scale memory keepsake

5 hours ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

User comments : 0