New Images Reveal Different Magma Pools Form the Ocean's Crust

Aug 29, 2005

For the first time, scientists have produced images of the oceanic crust and found that the upper and lower layers of the crust are likely formed from different magma pools.

The images begin to answer some lingering questions about where new ocean crust comes from and whether it is all formed the same way.

Geophysicists Robert Detrick and Juan-Pablo Canales of Woods Hole Oceanographic Institution (WHOI) and colleagues used reflected seismic, or sound, waves to successfully image the structure of the lower crust across the flanks of the Juan de Fuca Ridge, a spreading plate boundary off the Pacific Northwest coast.

Their study, co-authored by researchers at Columbia University's Lamont-Doherty Earth Observatory and Scripps Institution of Oceanography, appears in the August 25, 2005 issue of Nature.

By recording the reflection of seismic waves off the lower crust at the crust-mantle boundary, a technique common in oil exploration, the researchers found evidence strongly suggesting that the base of the crust forms much differently than its overlying layers.

"Seismic reflection is a powerful tool to image the sub-surface detailed structure of the Earth down to several kilometers or miles below the surface," study co-author Canales said.

"Scientists studying the formation of the ocean crust have been debating over the past decade whether all of the crust is formed from magma that accumulates in a single pool or lens a mile or two deep, or if it forms from multiple magma sills at different levels."

Detrick, Canales and colleagues analyzed about 1,500 kilometers (935 miles) of data collected on the Juan de Fuca Ridge off the coast of Washington, Oregon and northern California.

The images are the first of their kind showing solidified magma lenses and sills, narrow lateral intrusions of magma, embedded in the boundary between the mantle and the overlying crust, a region known as the Moho transition zone.

The existence of these magma lenses near a mid-ocean ridge suggests that the lower oceanic crust is formed from several smaller sources of magma rather than a single large pool located in the middle of the crust.

Unlike continental crust, which is very old and thick, oceanic crust averages 6-7 kilometers (3-4 miles) thick and is constantly being recycled at tectonic plate boundaries on the seafloor. Crust is destroyed at subduction zones, where plates come together, and created at mid-ocean ridges, where plates are pulling apart, like the Juan de Fuca Ridge.

At these ridges, also known as seafloor spreading centers, molten rock, or magma, rises from deep within the earth and solidifies to become new crust. But the exact source of that magma—particularly the magma that forms the lower layers of the crust—was not well understood until now.

Previously, geophysicists knew that the topmost layer of the crust cooled from molten rock supplied by a single pool, or lens, of magma located in the crust's middle layers.

What was not known was whether the lower crust, which lies just above the mantle, solidified from the same melt lens or from many smaller magma bodies in the deeper crust-mantle transition zone. The new study found evidence of multiple pockets of molten rock now frozen, lending strong support to the latter theory.

Geophysical studies along mid-ocean ridges to date using seismic reflection have been able to image only one single crustal melt lens, supporting the first model of crustal formation.

However, other remote-sensing geophysical methods that are used to infer the mechanical properties of the crust indicate that magma must also accumulate at deeper levels, in particular at the base of the crust or the Moho transition zone.

The multiple-lens model comes from field observations at ophiolites where the remnants of the multiple melt sills can be mapped. Ophiolites are slabs of oceanic crust long ago thrust up onto dry land and are easily accessible to geologists seeking clues to what new crust might look like.

"It is exciting that different observational approaches, marine seismology and ophiolite studies, that look at the same problem at different spatial and resolution scales are converging towards a unified geological and geophysical model of how the ocean crust is formed," Canales said.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

New view of Rainier's volcanic plumbing

Jul 17, 2014

By measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier's deep volcanic plumbing and partly molten rock ...

New evidence for oceans of water deep in the Earth

Jun 12, 2014

Researchers from Northwestern University and the University of New Mexico report evidence for potentially oceans worth of water deep beneath the United States. Though not in the familiar liquid form—the ...

New insight into the temperature of deep Earth

May 22, 2014

Scientists from the Magma and Volcanoes Laboratory (CNRS) and the European Synchrotron, the ESRF, have recreated the extreme conditions 600 to 2900 km below the Earth's surface to investigate the melting ...

No Yellowstone mega-eruption coming, experts say

Apr 27, 2014

Yellowstone National Park are fighting viral rumors of an impending, cataclysmic eruption of a mega volcano slumbering at the US Western preserve known for its geothermal features.

Recommended for you

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

How can we find tiny particles in exoplanet atmospheres?

Aug 29, 2014

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

Spitzer telescope witnesses asteroid smashup

Aug 28, 2014

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

User comments : 0