Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

Aug 26, 2005 feature
Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

by Gina M. Buss

Researchers in Germany have found a way to use bacteria which are able to accumulate toxic metals and survive in nuclear waste as a way of cleaning up toxic dumps.

230,000 tons of nuclear waste: that’s how much toxic metal can accumulate after 30 years of mining uranium - and that’s just one waste pile. With all the nuclear waste production throughout the world, this toxic metal is literally “piling up” in more and more places, and is encroaching on inhabited areas.

During the process of generating nuclear power and nuclear weapons, radionuclides like uranium are discharged into the environment. These metals pose a serious ecological and health threat and usually contaminate the soil, sediment, and waters surrounding the waste piles.

Conventional methods of cleaning up these toxic wastes are often expensive and not very effective. The environment is in dire need of a novel approach to waste clean-up and researchers in Germany may have the answer.

A recent study from the Institutes of Radiochemistry and Nuclear Physics in Dresden outlines a way of using bioremediation as a means for eliminating nuclear waste. Bioremediation is a process that uses microorganisms to return an environment back to its original condition after it has been exposed to contaminants.

Nuclear waste piles, such as the one in southeast Germany that’s highlighted in the
study, are a reservoir for certain strains of bacteria. These bacteria have evolved special mechanisms to survive in this waste that would normally be toxic to other types of microorganisms.

The strain Bacillus sphaericus has evolved a crystalline surface layer (S-layer) that covers the outside of the cell. This layer is more than a protective barrier to the bacteria, it serves to accumulate high amounts of toxic metals such as uranium, lead, copper, aluminum, and cadmium.

Researchers are currently seeking out ways to exploit the bacteria’s strategies. New technology is incorporating the S-layer structure onto silicon wafers, metals, polymers, nanoclusters, and bioceramic discs. All of these products could be used to remove metals from contaminated water and soil.

Additionally, these technologies could be used to recover precious metals such as platinum and palladium from industrial waste sites and recycle them for making electronic products.

Bacteria may be the template for new technology aimed at nuclear waste removal. The time may be near when synthetic S-layer discs can be placed in contaminated areas and act as sponges, cleaning up a big toxic mess.

Reference:

Pollman K, Raff J, Merroun M, Fahmy K, and Selenska-Pobell S.
Biotechnology Advances. 2005. Article in press.

by Gina M. Buss, Copyright 2005 PhysOrg.com

Explore further: The stapes of a neanderthal child points to the anatomical differences with our species

add to favorites email to friend print save as pdf

Related Stories

Postpone the nuclear waste decision

Apr 02, 2012

Although nuclear waste has been produced for a long time, there is still no good way to discard the highly toxic material, which remains hazardous for up to 130 000 years. In his new book titled Nuclear Waste Management and ...

Fracking's environmental impacts scrutinised

Sep 22, 2014

(Phys.org) —Greenhouse gas emissions from the production and use of shale gas would be comparable to conventional natural gas, but the controversial energy source actually faired better than renewables on some environmental ...

Recommended for you

Destroyed Mosul artefacts to be rebuilt in 3D

Mar 27, 2015

It didn't take long for the scientific community to react. Two weeks after the sacking of the 300 year-old Mosul Museum by a group of ISIS extremists went viral on Youtube, researchers from the ITN-DCH, IAPP ...

Boys plagiarise more than girls at school

Mar 27, 2015

Research by the University of the Balearic Islands has analysed the phenomenon of academic plagiarism among secondary school students. The study, published in the journal Comunicar, confirms that this practi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.