Nanomaterials to Mimic Cells

Aug 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science Foundation with $1.6 million over four years, will study membranes mounted on aerogels, solid materials riddled with so many tiny pores that they are mostly empty.

All living cells are wrapped in a double-layered membrane of oily lipid molecules. Cell membranes are studded with proteins and other molecules, governing how food and wastes get in and out of a cell, how cells signal to and react to their environment, and how they divide and grow.

Currently, researchers studying artificial membranes mount them on solid substrates such as gold, glass or polymers, but that means that only one side of the membrane is accessible, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis and principal investigator on the project.

Using the porous aerogel as a support, the researchers should be able to access and study both sides of the membrane.

"The hope is to build artificial membrane systems that are as close to a biological membrane as we can get right now," said Marjorie Longo, associate professor of chemical engineering and materials science at UC Davis.

The studies could lead to new insights into how real cell membranes behave, for example in the platelet cells that form blood clots.

Source: UC Davis

Explore further: 'Nanomotor lithography' answers call for affordable, simpler device manufacturing

add to favorites email to friend print save as pdf

Related Stories

Cell division, minus the cells

3 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

Water purification at the molecular level

3 hours ago

(Phys.org) —Fracking for oil and gas is a dirty business. The process uses millions of gallons of water laced with chemicals and sand. Most of the contaminated water is trucked to treatment plants to be ...

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Tiny carbon nanotube pores make big impact

21 hours ago

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

How did complex life evolve? The answer could be inside out

Oct 27, 2014

A new idea about the origin of complex life turns current theories inside out. In the open access journal BMC Biology, cousins Buzz and David Baum explain their 'inside-out' theory of how eukaryotic cells, which all multic ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.