Columbia Researchers Bring Nanotech's Promise a Step Closer to Reality

Aug 22, 2005

Scientists at Columbia University's Nanoscience Center have solved a fundamental, and to date, highly elusive challenge in the fast-developing world of nanotech-molecular electronic devices.

In the July 22nd issue of Science, Colin Nuckolls, an associate professor of chemistry, and his colleagues George Tulevski, Matt Myers, Michael Steigerwald, along with Mark S. Hybertsen, from the department of applied physics and applied mathematics, describe how they created a so-called electricity-bridge to allow current to flow efficiently between molecules and nano-sized metals, a process necessary for molecular electronic device construction.

The discovery -- involving the ability to construct materials or machines on nano-scales (a nanometer is a billionth of a meter) -- brings scientists one step closer to achieving previously unimagined possibilities, including information processing with molecules, medicines from nanoparticles that vastly improve delivery and dosage, and molecule-sized robots that flow through a person's bloodstream to treat clogged arteries in heart attack or (potential heart attack) patients.

Nuckolls' research team at Columbia's Nanoscience Center built an effective bridge linking the molecular world with a metal (Ruthenium) that is conductive, stable and durable. The majority of experiments to date have used gold as a possible link, which does not offer good electrical conductivity, lacks endurance and doesn't have any useful subsequent chemistry.

Successful miniaturization (i.e., building nanoscale devices) requires these "electricity-bridges" since most electrical activity that is important in electronic devices occurs within just a few nanometers of an interface. "It can not be overstated how important these interfacial structures and properties are," Nuckolls says. "In a sense, interfaces are where the 'expanding nano' of chemistry and the 'shrinking nano' of electronics meet." In other words, he adds, "interfaces are where the rubber meets the road."

Nuckolls' research exemplifies Columbia's interdisciplinary approach and the University's effort to coordinate and harness expertise in various fields -- in this case, engineering, chemistry, mathematics, biology and numerous others to address emerging 21 st century scientific challenges.

Source: Columbia University

Explore further: Cut flowers last longer with silver nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Getting more electricity out of solar cells

May 07, 2014

(Phys.org) —When sunlight shines on today's solar cells, much of the incoming energy is given off as waste heat rather than electrical current. In a few materials, however, extra energy produces extra electrons—behavior ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Recommended for you

Cut flowers last longer with silver nanotechnology

3 minutes ago

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

20 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0