Chondrules younger than thought

Aug 19, 2005

A University of Toronto scientist has found unexpectedly "young" material in meteorites, a discovery that breaks open current theory the early solar system.

Researchers who have studied chondrules generally agree that most were formed as a sudden, repetitive heat, likely from a shock wave, condensed the nebula of dust floating around the early sun.

University of Toronto geologist Yuri Amelin and lead author Alexander Krot of the University of Hawaii studied the chondrules' mineralogical structure of the meteorites of Gujba and Hammadah al Hamra and determined their isotopic age. "It soon became clear that these particular chondrules were not of a nebular origin," says Amelin. "And the ages were quite different from what was expected. It was exciting."

Amelin said not only were these chondrules not formed by a shock wave, but they emerged much later than other chondrules.

The evolution of the solar system has been seen as a linear process, through which gases around the early sun gradually cooled to form small particles that eventually clumped into asteroids and planets. Now there is evidence of chondrules forming at two very distinct times, according to the study published in Nature.

Copyright 2005 by United Press International

Explore further: PanSTARRS K1, the comet that keeps going

add to favorites email to friend print save as pdf

Related Stories

Dusty Shock Waves Generate Planet Ingredients

Nov 11, 2008

(PhysOrg.com) -- Shock waves around dusty, young stars might be creating the raw materials for planets, according to new observations from NASA's Spitzer Space Telescope.

Jupiter's formation linked to that of primitive meteorites

Mar 04, 2005

The process that formed the giant planet Jupiter may also have spawned some of the tiniest and oldest members of our solar system -- millimeter-sized spheres called chondrules, the major part of the most primitive meteo ...

Recommended for you

PanSTARRS K1, the comet that keeps going

1 hour ago

Thank you K1 PanSTARRS for hanging in there! Some comets crumble and fade away. Others linger a few months and move on. But after looping across the night sky for more than a year, this one is nowhere near ...

NASA rocket has six minutes to study solar heating

4 hours ago

(Phys.org) —On Sept. 30, 2014, a sounding rocket will fly up into the sky – past Earth's atmosphere that obscures certain wavelengths of light from the sun—for a 15-minute journey to study what heats ...

Cassini watches mysterious feature evolve in Titan sea

19 hours ago

(Phys.org) —NASA's Cassini spacecraft is monitoring the evolution of a mysterious feature in a large hydrocarbon sea on Saturn's moon Titan. The feature covers an area of about 100 square miles (260 square ...

User comments : 0