The Big Blue

Aug 18, 2005
The Big Blue

Liquid-crystal 'blue phases' can be just about any colour in the rainbow. This makes them potentially useful for all sorts of applications, from electrically switchable colour displays to light filters and lasers. But blue phases have a significant limitation: they exist over a very small range in temperature, typically no more than two degrees Celsius at most.

Image: Optical textures of the wide temperature range liquid crystal blue phase.

The Department's Professor Harry Coles and Dr Mikhail Pivnenko report a solution to this instability in this week's scientific journal Nature. They have discovered a class of blue-phase liquid crystals that remain stable over a very much wider range: from 16 to 60 degrees. The researchers show that their ultrastable blue phases could find some useful applications in optical technology.

Typically, liquid crystals are made from rod-like molecules that line up in at least one direction while remaining mobile and disorderly in the others. In blue phases, this alignment of molecules takes a complicated form: the molecules assemble into cylindrically shaped arrays in which the direction of alignment twists in a helix, while the helices themselves criss-cross in three dimensions. The structure repeats regularly every several hundred nanometres, which means that it reflects visible light of a particular colour.

The Big Blue 2


Image above: The colours show the differently oriented polydomain platelets.

The new blue phases are made from molecules in which two stiff, rod-like segments are linked by a flexible chain. The researchers say that this unusual structure is what makes the blue phase so stable. They show that the colour of the reflected light can be switched by applying an electric field to the material, and that this could be used to produce three-colour (red-green-blue) pixels for full-colour displays.

Link: Nature article

Source: Cambridge University

Explore further: Tandem microwave destroys hazmat, disinfects

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Life's rhythms

Jul 04, 2013

While our "body clock" regulates our 24 hour daily routine, a woman's menstrual cycle follows a 30 day rhythm. Many marine animals, such as the worm Platynereis, synchronize their reproduction rhythm with ...

Gold nanoparticles: A new delivery for cancer drugs

May 08, 2013

(Phys.org) —The protein tumor necrosis factor-alpha (TNF-alpha) is a powerful weapon in the arsenal to control cancer. Unfortunately, as is the case with many potent cancer therapies, the use of TNF-alpha as an anti-cancer ...

Recommended for you

Tandem microwave destroys hazmat, disinfects

just added

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Physicists design zero-friction quantum engine

20 minutes ago

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Cornell theorists continue the search for supersymmetry

2 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

User comments : 0