The Big Blue

Aug 18, 2005
The Big Blue

Liquid-crystal 'blue phases' can be just about any colour in the rainbow. This makes them potentially useful for all sorts of applications, from electrically switchable colour displays to light filters and lasers. But blue phases have a significant limitation: they exist over a very small range in temperature, typically no more than two degrees Celsius at most.

Image: Optical textures of the wide temperature range liquid crystal blue phase.

The Department's Professor Harry Coles and Dr Mikhail Pivnenko report a solution to this instability in this week's scientific journal Nature. They have discovered a class of blue-phase liquid crystals that remain stable over a very much wider range: from 16 to 60 degrees. The researchers show that their ultrastable blue phases could find some useful applications in optical technology.

Typically, liquid crystals are made from rod-like molecules that line up in at least one direction while remaining mobile and disorderly in the others. In blue phases, this alignment of molecules takes a complicated form: the molecules assemble into cylindrically shaped arrays in which the direction of alignment twists in a helix, while the helices themselves criss-cross in three dimensions. The structure repeats regularly every several hundred nanometres, which means that it reflects visible light of a particular colour.

The Big Blue 2


Image above: The colours show the differently oriented polydomain platelets.

The new blue phases are made from molecules in which two stiff, rod-like segments are linked by a flexible chain. The researchers say that this unusual structure is what makes the blue phase so stable. They show that the colour of the reflected light can be switched by applying an electric field to the material, and that this could be used to produce three-colour (red-green-blue) pixels for full-colour displays.

Link: Nature article

Source: Cambridge University

Explore further: New largest number factored on a quantum device is 56,153

add to favorites email to friend print save as pdf

Related Stories

New study finds oceans arrived early to Earth

Oct 30, 2014

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet's surface and are home to the world's greatest diversity of life. While water is essential for life ...

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Recommended for you

New largest number factored on a quantum device is 56,153

58 minutes ago

(Phys.org)—Researchers have set a new record for the quantum factorization of the largest number to date, 56,153, smashing the previous record of 143 that was set in 2012. They have shown that the exact same room-t ...

Scientists film magnetic memory in super slow-motion

4 hours ago

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.