Sea Ice May Be On Increase In The Antarctic: A Phenomenon Due To A Lot Of 'Hot Air'?

Aug 17, 2005

A new NASA-funded study finds that predicted increases in precipitation due to warmer air temperatures from greenhouse gas emissions may actually increase sea ice volume in the Antarctic's Southern Ocean.

This adds new evidence of potential asymmetry between the two poles, and may be an indication that climate change processes may have different impact on different areas of the globe.

"Most people have heard of climate change and how rising air temperatures are melting glaciers and sea ice in the Arctic," said Dylan C. Powell, co-author of the paper and a doctoral candidate at the University of Maryland-Baltimore County.

"However, findings from our simulations suggest a counterintuitive phenomenon. Some of the melt in the Arctic may be offset by increases in sea ice volume in the Antarctic."

The researchers used satellite observations for the first time, specifically from the Special Sensor Microwave/Imager, to assess snow depth on sea ice, and included the satellite observations in their model. As a result, they improved prediction of precipitation rates.

By incorporating satellite observations into this new method, the researchers achieved more stable and realistic precipitation data than the typically variable data found in the polar regions. The paper was published in the June issue of the American Geophysical Union's Journal of Geophysical Research.

"On any given day, sea ice cover in the oceans of the polar regions is about the size of the U.S.," said Thorsten Markus, co-author of the paper and a research scientist at NASA's Goddard Space Flight Center. "Far-flung locations like the Arctic and Antarctic actually impact our temperature and climate where we live and work on a daily basis."

According to Markus, the impact of the northernmost and southernmost parts on Earth on climate in other parts of the globe can be explained by thermal haline (or saline) circulation. Through this process, ocean circulation acts like a heat pump and determines our climate to a great extent.

The deep and bottom water masses of the oceans make contact with the atmosphere only at high latitudes near or at the poles.

In the polar regions, the water cools down and releases its salt upon freezing, a process that also makes the water heavier. The cooler, salty, water then sinks down and cycles back towards the equator. The water is then replaced by warmer water from low and moderate latitudes, and the process then begins again.

Typically, warming of the climate leads to increased melting rates of sea ice cover and increased precipitation rates. However, in the Southern Ocean, with increased precipitation rates and deeper snow, the additional load of snow becomes so heavy that it pushes the Antarctic sea ice below sea level.

This results in even more and even thicker sea ice when the snow refreezes as more ice. Therefore, the paper indicates that some climate processes, like warmer air temperatures increasing the amount of sea ice, may go against what we would normally believe would occur.

"We used computer-generated simulations to get this research result. I hope that in the future we'll be able to verify this result with real data through a long-term ice thickness measurement campaign," said Powell.

"Our goal as scientists is to collect hard data to verify what the computer model is telling us. It will be critical to know for certain whether average sea ice thickness is indeed increasing in the Antarctic as our model indicates, and to determine what environmental factors are spurring this apparent phenomenon."

Achim Stossel of the Department of Oceanography at Texas A&M University, College Station, Tex., a third co-author on this paper, advises that "while numerical models have improved considerably over the last two decades, seemingly minor processes like the snow-to-ice conversion still need to be better incorporated in models as they can have a significant impact on the results and therefore on climate predictions."

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: Image: NGC 6872 in the constellation of Pavo

add to favorites email to friend print save as pdf

Related Stories

NASA air campaigns focus on Arctic climate impacts

Sep 17, 2014

Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region's summer comes to a close, NASA is hard at ...

Tens of thousands join London climate march

Sep 21, 2014

Tens of thousands of people in London joined a global day of protest Sunday to demand action on climate change, among them British actress Emma Thompson who said the challenge to save the planet was like ...

Kiribati leader visits Arctic on climate mission

Sep 20, 2014

Fearing that his Pacific island nation could be swallowed by a rising ocean, the president of Kiribati says a visit to the melting Arctic has helped him appreciate the scale of the threat.

Spy on penguin families for science

Sep 17, 2014

Penguin Watch, which launches on 17 September 2014, is a project led by Oxford University scientists that gives citizen scientists access to around 200,000 images of penguins taken by remote cameras monitoring ...

Weathering the storm

Sep 03, 2014

Old-timers sharing childhood stories about growing up in Maine sometimes recount hiking 10 miles uphill in 3 feet of snow to get to school—and home.

Adapting to Arctic change

Sep 03, 2014

Arctic climate change is real and happening faster than expected. Impacts will likely be large over the next 20 years and society needs to adapt. Climate researchers around the world are now engaged to help ...

Recommended for you

Image: NGC 6872 in the constellation of Pavo

13 minutes ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

53 minutes ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

How ancient impacts made mining practical

1 hour ago

About 1.85 billion years ago, in what would come to be known as Sudbury Canada, a 10 kilometer wide asteroid struck with such energy that it created an impact crater 250 kilometers wide. Today the chief industry of Sudbury ...

Indian spacecraft on course to enter Mars' orbit

2 hours ago

With home-grown technology and a remarkably low budget of about $75 million, India was on course to become the first nation to conduct a successful Mars mission on its first try.

User comments : 0