UA synthetic gecko foot-hairs leading to reusable adhesives

Aug 15, 2005

The interest of University of Akron polymer researchers in the fascinating ability of geckos to climb any surface and hang from just one toe soon could lead to advances in adhesives used in microelectronics and space applications.

The UA researchers are part of a team developing synthetic hairs from carbon nanotubes that have adhesion forces 200 times higher than those observed with gecko foot-hairs. The team includes Dr. Ali Dhinojwala, UA associate professor of polymer science; UA polymer graduate student Betul Yurdumakan; and Nachiket Raravikar and professor Pulickel Ajayan from Rensselaer Polytechnic Institute in New York.

The results of their work, titled “Synthetic gecko foot-hairs from multiwalled carbon nanotubes,” were recently published in the journal Chemical Communications. The paper can be found online at www.rsc.org/publishing/journals/CC/article.asp?doi=b506047h .

The research — funded by a four-year, $400,000 grant from the National Science Foundation — studies the powerful adhesion powers of geckos. The lizards' five-toed feet are covered with microscopic elastic hairs called setae. The ends of the setae split into spatulas, which come into contact with a surface and hold the feet in place.

“It is well known that insects such as beetles and reptiles such as geckos have evolved and developed this most effective adhesive system in order to survive,” Dhinojwala says. “The biological system in these creatures has perfected not only the mechanism to attach to steep vertical surfaces but also to detach at will.

“We already have strong adhesives that can support large forces, and we have weak adhesives such as sticky notes that can be used many times but are not strong enough to support large forces,” he adds. “It will be a challenge to figure out how to design an adhesive that can provide a strong attachment to support a large force but at the same time have the capability of detaching itself from the surface with ease.”

To achieve these objectives, the researchers are fabricating surface patterns to mimic the gecko's setae and spatulas, Dhinojwala explains. The structure is based on multiwalled carbon nanotubes constructed on polymer surfaces.

Dhinojwala says the research, which will continue with experiments with larger surface areas, could lead to improved, reusable dry adhesives that will have critical applications in microelectronics, information technology, robotics, space and other areas.

Source: University of Akron

Explore further: Android gains in US, basic phones almost extinct

add to favorites email to friend print save as pdf

Related Stories

Scientists trace gecko footprint, find clue to glue

Aug 25, 2011

Geckos' ability to scamper up walls with ease has long inspired scientists who study the fine keratin hairs on these creatures' footpads, believed responsible for the adhesion. Researchers at The University ...

Spider silk glue inspires next-generation technology

Jul 22, 2011

(PhysOrg.com) -- Water affects orb spider web glue differently than cobweb glue. Orb web glue reacts to humidity, but cobweb glue resists it. These findings by a University of Akron research team inspire the ...

Scientists untangle spider web stickiness

Dec 03, 2010

Ali Dhinojwala and Vasav Sahni consider themselves materials scientists, not biologists. They study surfaces, friction and adhesion. Nevertheless, they have discovered that understanding how nature makes things ...

Sticky gecko feet: The role of temperature and humidity

May 14, 2008

A team of five University of Akron researchers has published the paper, “Sticky gecko feet: the role of temperature and humidity” in PLoS ONE, an open-access, online journal for peer-reviewed scientific and medical research.

Recommended for you

LinkedIn membership hits 300 million

2 hours ago

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

User comments : 0

More news stories

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...