Blue Gene supercomputer installed at IBM Zurich Research Laboratory

Aug 11, 2005

One of the world's fastest supercomputers was officially inaugurated at IBM's Zurich Research Laboratory (ZRL). The so-called BlueGene/L system has the same performance as the computer ranked 21st on the current list of the world's top 500 supercomputers. It will be used to address some of the most demanding problems faced by scientists regarding the future of information technology, such as how computer chips can be made even smaller and more powerful. Thanks to this new supercomputer, ZRL researchers can now run large-scale simulations of systems having a complexity similar to that of real semiconductor structures in microchips.

Supercomputers of the Blue Gene family comprise modules of multiple racks. ZRL's two-rack BlueGene/L system has a peak performance of 11.2 Teraflops (i.e. 11.2 trillion calculations per second). In Switzerland, this performance is topped only by the four-rack BlueGene/L system at the Ecole Polytechnique Fédérale de Lausanne, which has a maximum performance of 22.9 Teraflops.

The ZRL supercomputer will be used for emerging Deep Computing and research applications, primarily for simulations in computational materials science. This field is of special importance in view of the continuing miniaturization of microchips. Microchip structures and elements have become smaller and smaller, resulting in better and faster performance. This development so far has largely followed "Moore's Law", which predicts that the number of transistors on an integrated circuit will double every two years.

Progressive miniaturization, however, raises new issues. Integrated circuits of microchips are composed of transistors, which serve as switches. They typically have a sandwich-type structure of insulating and conducting layers, some of which are only a few atomic layers thick. This means that leakage currents through the insulation layers will pose an ever more serious problem as chips become increasingly smaller. Efforts are underway to design novel materials with better insulation properties than the currently used silicon dioxide

The suitability of such materials for silicon-based microchips critically depends on their characteristics when implemented in a transistor. To investigate these features, ZRL researchers will use the new supercomputer to produce simulations based on first-principles molecular dynamics. In other words, they will model the behavior of a material solely using quantum mechanics. These simulations are very complex and thus require a significant amount of processing capability. For example, to calculate all interactions in a system of about 100 to 500 atoms using a time step of 0.1 femtoseconds (one femtosecond equals one millionth of a millionth of a millisecond), it took the previous ZRL supercomputer — the most powerful system in Switzerland three years ago — two minutes of calculation time. Today, with BlueGene/L, the same calculation can be done in about 10 seconds.

To achieve such performance, software is also a crucial factor. The CPMD code used for such simulations has been tuned to exploit the unique features of the modular BlueGene/L hardware. This means that not only the speed but also the complexity of simulations can be increased with BlueGene/L. Simulations can be conducted on systems that involve anywhere from 1000 up to 5000 atoms, a number that is necessary to obtain a realistic model of the chemistry and physics of the relevant materials in a microchip.

The ability to design novel materials with tailored properties is crucial to the further improvement of computer chips. Research efforts in this field are therefore aimed at achieving further miniaturization in semiconductor technology and may eventually contribute to the development of next-generation supercomputers. Thanks to BlueGene/L technology, a possible breakthrough has come closer.

Explore further: Fueled by oil, agriculture sector welcomes low diesel prices

add to favorites email to friend print save as pdf

Related Stories

A chemical modified version of the second messenger cAMP

23 minutes ago

Second messengers are small molecules that transmit signals in the cell. A single second messenger typically interacts with several signalling proteins. "Even though this may give the impression of promiscuity, the interactions ...

Living longer, not healthier

35 minutes ago

A study of long-lived mutant C. elegans by scientists at the University of Massachusetts Medical School shows that the genetically altered worms spend a greater portion of their life in a frail state and ex ...

Doing the right thing

1 hour ago

General Motors is in the midst of a series of large-scale, costly automobile recalls, and the process has engendered an assessment of the company in the public arena that isn't particularly flattering at ...

Recommended for you

Navy wants to increase use of sonar-emitting buoys

7 hours ago

The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales and other creatures ...

Standalone wireless info display device an easy fit

14 hours ago

A Latvian team has come up with a good-looking WiFi display device, connecting to the Internet using WiFi, which runs on a high-capacity built-in battery and tracks what's important to you. This is a standalone ...

Technology improves avalanche gear for backcountry skiers

15 hours ago

As outdoor recreation companies increasingly cater to skiers and snowboarders who like to venture beyond the groomed slopes at ski resorts and tackle backcountry terrain, they've put a special emphasis on gear and equipment ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.