NIST Demonstrates Better Memory with Quantum Computer Bits

Aug 10, 2005

Physicists at the National Institute of Standards and Technology (NIST) have used charged atoms (ions) to demonstrate a quantum physics version of computer memory lasting longer than 10 seconds—more than 100,000 times longer than in previous experiments on the same ions.

The advance improves prospects for making practical, reliable quantum computers (which make use of the properties of quantum systems rather than transistors for performing calculations or storing information). Quantum computers, if they can be built, could break today’s best encryption systems, accelerate database searching, develop novel products such as fraud-proof digital signatures or simulate complex biological systems to help design new drugs.

As described in the Aug. 5, 2005, issue of Physical Review Letters,* NIST scientists stored information in single beryllium ions for longer periods of time by using a different pair of the ions’ internal energy levels to represent 1 and 0 than was used in the group's previous quantum computing experiments. This new set of quantum states is unaffected by slight variations in magnetic fields, which previously caused memory losses in ions stored in electromagnetic traps.

Quantum memory must be able to store “superpositions,” an unusual property of quantum physics in which a quantum bit (qubit) such as an ion represents both 0 and 1 at the same time. The new approach enables qubits to maintain superpositions over 1 million times longer than might be needed to carry out the information processing steps in a future quantum computer. The advance is, therefore, an important step toward the goal of designing a “fault tolerant” quantum computer because it significantly reduces the computing resources needed to correct memory errors.

In related experiments also described in the paper, NIST scientists demonstrated that pairs of “entangled” ions can retain their quantum states for up to about 7 seconds. Entanglement is another unusual property of quantum physics that correlates the behavior of physically separated ions. Superposition and entanglement are the two key properties expected to give quantum computers great power.

The research was supported by the Advanced Research and Development Activity/National Security Agency. More information about NIST's quantum computing research is available at qubit.nist.gov .


Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Quantum Computing Steps Forward

Jan 20, 2006

With the University of Michigan’s latest production of a quantum chip, it’s another step forward for quantum computers that will someday dwarf the abilities of today’s machines. ...

Crystal quantum memories for quantum communication

Sep 19, 2013

Research into the strange phenomenon known as quantum entanglement - once described as 'spooky' by Albert Einstein - could revolutionise ICT over the coming years, enabling everything from ultra-fast computing ...

Recommended for you

Innovative strategy to facilitate organ repair

11 hours ago

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

12 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...