TUNAMOS project uses magnetic nano-oscillator to solve limitations of integrated oscillators in wireless devices

Aug 02, 2005

The project "TUnable NAno-Magnetic OScillators for integrated transceiver applications" aims at demonstrating the breakthrough concept spin torque in a nano-scale microwave integrated oscillator for application in wireless integrated devices. The project is part of the FP6 program of the EU and is being coordinated by IMEC.

The recent discovery of the spin torque oscillator, a nano-patterned ferromagnetic device in which high-quality tunable microwave oscillations can be generated by a small DC current, opens perspectives to solve the paradigms in microwave engineering design. None of the RF oscillators existing today combines a high-quality resonance with a high integration level, necessary for low-power and low-cost applications, and wideband tunability.

The frequency of the oscillation generated by the spin torque oscillator can be tuned by a magnetic field as well as by the current in a range of 5- 40GHz. Quality factors as high as 18000 have been observed, making the magnetic flute a natural current-controlled RF source. This electronic device is extremely suitable for integration because of the nano-scale dimensions (diameter of the contact < 100 nm) and the simple structure of the metallic magnetic multi-layer. The fabrication is compatible with the back-end flow of standard Si technology and can fully profit from the cost/scalability economics reflected by Moore’s law.

The TUNAMOS project aims to study the oscillating modes in the range of 5-10 GHz as well as the influence of parameters (e.g. temperature, geometry,...) on the microwave frequency, signal power and phase noise. Monolithic integration with a high-gain RF CMOS amplifier circuit will boost the power to levels suitable for wireless applications.

This oscillator has the potential of bringing closer the vision of integrating flexible and agile low-cost radio capability into every silicon product of the intelligent environment of tomorrow.

Other partners in the TUNAMOS-project are STMicroelectronics, UPS Université Paris Sud and UFSD University of Sheffield. The project was launched on 1st of June 2005 for a duration of 3 years.

Source: IMEC

Explore further: Seattle Sounders score with SQL Server and fitness-tracking technology

add to favorites email to friend print save as pdf

Related Stories

'Comb on a chip' powers new atomic clock design

Jul 22, 2014

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Future electronics may depend on lasers, not quartz

Jul 17, 2014

(Phys.org) —Nearly all electronics require devices called oscillators that create precise frequencies—frequencies used to keep time in wristwatches or to transmit reliable signals to radios. For nearly ...

Portable frequency comb rolls out of the lab

Mar 21, 2014

A PML team is hitting the road with a fine-tooth comb. Scientists in the Quantum Electronics and Photonics Division have devised a portable optical frequency comb that is capable of laboratory-grade measurements ...

Tiny sensors put the squeeze on light

Oct 24, 2013

Microelectromechanical systems, known as MEMS, are ubiquitous in modern military systems such as gyroscopes for navigation, tiny microphones for lightweight radios, and medical biosensors for assessing the ...

Recommended for you

LiquidPiston unveils quiet X Mini engine prototype

4 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Novel robotic walker helps patients regain natural gait

9 hours ago

Survivors of stroke or other neurological conditions such as spinal cord injuries, traumatic brain injuries and Parkinson's disease often struggle with mobility. To regain their motor functions, these patients ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.