Nanoscale systems for early diagnosis

Jul 14, 2005

A partnership of scientists from the College of Engineering at UC Santa Barbara, Washington University in St. Louis and UC Berkeley have been awarded $12.5 million to develop nanoscale agents to provide early diagnosis and treatment of acute pulmonary and systemic vascular injury over the next five years. The organizations were selected as a collaborative "Program of Excellence in Nanotechnology" (PEN) by the National Heart Lung and Blood Institute of the National Institutes of Health (NIH).

The team, led at UCSB by Professor Craig Hawker, Director of the Materials Research Laboratory, and coordinated by Professor Karen Wooley at Washington University in St. Louis will use nanoscale materials as carriers for diagnostic systems and to deliver therapeutic agents. Hawker and Wooley working with Professor Jean Frechet, PhD, at the University of California, Berkeley, will be developing a way to trigger a breakdown of the nanoparticles after a payload, such as a drug or antiviral agent, is delivered directly to a diseased zone. Targeted nanoparticles will search out arteries that are under stress or are diseased.

The nanoscale designs are based on the concept that advanced nanotechnologies can help overcome inherent limitations of molecular imaging and therapeutic gene transfer.

"I think part of the reason we received this grant was due to UCSB's excellence in soft materials and in engineering," said Hawker. Acute vascular injury and inflammation have been chosen as general targets since they affect tissues broadly, including those of the lung and cardiovascular system.

Source: University of California - Santa Barbara

Explore further: Nano scale research could yield better ways to identify and track malignant cells

add to favorites email to friend print save as pdf

Related Stories

Shining a light on quantum dots measurement

Jan 15, 2015

Due to their nanoscale dimensions and sensitivity to light, quantum dots are being used for a number of bioimaging applications including in vivo imaging of tumor cells, detection of biomolecules, and measurement ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.