Nanoscale systems for early diagnosis

Jul 14, 2005

A partnership of scientists from the College of Engineering at UC Santa Barbara, Washington University in St. Louis and UC Berkeley have been awarded $12.5 million to develop nanoscale agents to provide early diagnosis and treatment of acute pulmonary and systemic vascular injury over the next five years. The organizations were selected as a collaborative "Program of Excellence in Nanotechnology" (PEN) by the National Heart Lung and Blood Institute of the National Institutes of Health (NIH).

The team, led at UCSB by Professor Craig Hawker, Director of the Materials Research Laboratory, and coordinated by Professor Karen Wooley at Washington University in St. Louis will use nanoscale materials as carriers for diagnostic systems and to deliver therapeutic agents. Hawker and Wooley working with Professor Jean Frechet, PhD, at the University of California, Berkeley, will be developing a way to trigger a breakdown of the nanoparticles after a payload, such as a drug or antiviral agent, is delivered directly to a diseased zone. Targeted nanoparticles will search out arteries that are under stress or are diseased.

The nanoscale designs are based on the concept that advanced nanotechnologies can help overcome inherent limitations of molecular imaging and therapeutic gene transfer.

"I think part of the reason we received this grant was due to UCSB's excellence in soft materials and in engineering," said Hawker. Acute vascular injury and inflammation have been chosen as general targets since they affect tissues broadly, including those of the lung and cardiovascular system.

Source: University of California - Santa Barbara

Explore further: Nano engineering advances bone-forming material

add to favorites email to friend print save as pdf

Related Stories

Invisibility cloaks closer thanks to 'digital metamaterials'

Sep 15, 2014

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Physicists build first 500 GHz photon switch

Sep 10, 2014

The work took nearly four years to complete and it opens a fundamentally new direction in photonics – with far-reaching potential consequences for the control of photons in optical fiber channels.

Recommended for you

Twisted graphene chills out

2 hours ago

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

2 hours ago

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0