Nanoscale systems for early diagnosis

Jul 14, 2005

A partnership of scientists from the College of Engineering at UC Santa Barbara, Washington University in St. Louis and UC Berkeley have been awarded $12.5 million to develop nanoscale agents to provide early diagnosis and treatment of acute pulmonary and systemic vascular injury over the next five years. The organizations were selected as a collaborative "Program of Excellence in Nanotechnology" (PEN) by the National Heart Lung and Blood Institute of the National Institutes of Health (NIH).

The team, led at UCSB by Professor Craig Hawker, Director of the Materials Research Laboratory, and coordinated by Professor Karen Wooley at Washington University in St. Louis will use nanoscale materials as carriers for diagnostic systems and to deliver therapeutic agents. Hawker and Wooley working with Professor Jean Frechet, PhD, at the University of California, Berkeley, will be developing a way to trigger a breakdown of the nanoparticles after a payload, such as a drug or antiviral agent, is delivered directly to a diseased zone. Targeted nanoparticles will search out arteries that are under stress or are diseased.

The nanoscale designs are based on the concept that advanced nanotechnologies can help overcome inherent limitations of molecular imaging and therapeutic gene transfer.

"I think part of the reason we received this grant was due to UCSB's excellence in soft materials and in engineering," said Hawker. Acute vascular injury and inflammation have been chosen as general targets since they affect tissues broadly, including those of the lung and cardiovascular system.

Source: University of California - Santa Barbara

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

add to favorites email to friend print save as pdf

Related Stories

The gold standard

Dec 09, 2014

Precious elements such as platinum work well as catalysts in chemical reactions, but require large amounts of metal and can be expensive. However, computational modeling below the nanoscale level may allow ...

Defects are perfect in laser-induced graphene

Dec 10, 2014

Researchers at Rice University have created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser. The process works in air at room temperature ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.