Shaking Reduces Friction

Jul 08, 2005

Lateral vibrations can control friction at the nanoscale, researchers reported in the 1 July 2005 issue of Physical Review Letters.

The researchers modeled a tip interacting with a substrate that vibrates in the lateral direction, and showed that vibrations at the correct frequency and amplitude can dramatically reduce friction, and can even make it possible to transform stick-slip motion to smooth sliding.

Previous studies have suggested controlling friction with normal vibrations; this paper adds another new method scientists can potentially use to reduce friction. The authors also suggest experiments to test the effects they predict.

Being able to control friction in this way may be useful for micromechanical devices and computer disk drives, where friction may cause unwanted stick-slip motion or damage to the device.

Publication:

Z. Tshiprut, A. E. Filippov, and M. Urbakh
Phys. Rev. Lett. 95, 016101 (2005)
link.aps.org/abstract/PRL/v95/e016101

Abstract

Tuning Diffusion and Friction in Microscopic Contacts By Mechanical Excitations

We demonstrate that lateral vibrations of a substrate can dramatically increase surface diffusivity and mobility and reduce friction at the nanoscale. Dilatancy is shown to play an essential role in the dynamics of a nanometer-size tip which interacts with a vibrating surface. We find an abrupt dilatancy transition from the state with a small tip-surface separation to the state with a large separation as the vibration frequency increases. Atomic force microscopy experiments are suggested which can test the predicted effects.

Explore further: Experts cautious over Google nanoparticle project

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A new way to convert light to electrical energy

9 hours ago

The conversion of optical power to an electrical potential is of general interest for energy applications, and is typically accomplished by optical excitation of semiconductor materials. A research team has developed a new ...

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.