Subatomic particles: An art form

Jun 30, 2005
Subatomic particles: An art form

Quarks, photons, gluons—physicists understand their characteristics, but didn't know what they may look like. That is until Jan-Henrik Andersen translated the physical properties of subatomic particles to images on paper and canvas.

Image: Top/Muon event from the Fermilab Tevatron © U-M Professor Jan-Henrick Andersen, School of Art & Design

Andersen, an assistant professor in the University of Michigan's School of Art & Design, is exhibiting "Sized Matter-Perception of the Extreme Unseen" through August at the Fermi National Accelerator Laboratory in Batavia, Ill.

The exhibition is a display of 25 large-scale vibrantly colored computer-generated images inked on canvas and paper, as well as sculpture, that give visual qualities to subatomic particles. Andersen has bridged the optically impossible task of visually observing these particles by translating their properties and classification, known as the Standard Model of Subatomic Physics, into a coherent visual language. Here, the properties of velocity, color, mass and spin are represented as visual elements.

"No one has ever seen, nor will anyone ever see anything as small or fast as a quark or a neutrino," Andersen said. "One could argue that they could look like anything, if they have looks at all."

Andersen worked with U-M physicists Gordon Kane and David Gerdes to blend art and science.

"We worked together for many months, somehow overcoming our different ways of understanding and describing the world," Kane said. "We succeeded in generating a set of images that are both meaningful and beautiful. Andersen generated the images while the rest of us helped keep them focused and scientifically valid."

Gerdes provided Andersen with examples of real particle interactions from the Collider Detector Facility (CDF) experiment at Fermilab where he does his research.

"I discussed with him what the event represents," Gerdes said. "One of these is the top quark production event that is featured in the exhibit. It is very exciting to see these events turned into art. "

According to Bryan Rogers, dean of U-M's School of Art & Design, Andersen's work "indisputably reveals the emerging new connections between art and science, between visual image and mathematical construct. It joins the two almost-lost cultural friends at their edges and opens the door for more artists and scientists to explore together."

"While science proposes and explains our world with measurable means, visual art and design offers an intellectual and emotional appreciation of that which cannot be explained by any other means, measurable or not," Andersen said.

Not satisfied with simply translating the physical properties of particles into images, Andersen became enthralled with translating the images and their curvilinear geometries and properties into functional objects.

"The visual logic of the geometries seen in the images was extended into real space where I experimented with the consequences of adding two more dimensions—human scale and function," Andersen said. "The goal was to generate a broader sensory response than provided through vision alone, to search for more physical ways to communicate visual language broadening the cognitive approach."

To accomplish this feat, Andersen constructed chairs as well as a little boat. These projects allowed him to balance the body, paralleling the equilibrium found in particle parity, thereby increasing the awareness of the limitations of our initial perceptions.

"The freedom from the constraints of scientific conventions may broaden our comprehension of our world," Andersen said. "And I have taken great pleasure in freely bridging science with design—hopefully for the enrichment of each as they are linked by a common beauty."

Source: University of Michigan

Explore further: A 'quantum leap' in encryption technology

add to favorites email to friend print save as pdf

Related Stories

When things get glassy, molecules go fractal

37 minutes ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

57 minutes ago

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

57 minutes ago

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.

Brazil enacts Internet 'Bill of Rights'

1 hour ago

Brazil's president signed into law on Wednesday a "Bill of Rights" for the digital age that aims to protect online privacy and promote the Internet as a public utility by barring telecommunications companies ...

Recommended for you

A 'quantum leap' in encryption technology

15 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Using antineutrinos to monitor nuclear reactors

15 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Bake your own droplet lens

16 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

17 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Probing the sound of a quantum dot

18 hours ago

(Phys.org) —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.