Rosetta gets first glimpse of Deep Impact target

Jun 30, 2005
Rosetta gets first glimpse of Deep Impact target

ESA’s Rosetta comet-chaser spacecraft has acquired its first view of the Deep Impact target, Comet 9P/Tempel 1.
This first Rosetta image of the Deep Impact campaign was taken by its Navigation Camera (NAVCAM) between 08:45 and 09:15 CEST on 28 June 2005.
The image shows that the spacecraft now points towards Comet 9P/Tempel 1 in the correct orientation. The NAVCAM is pointing purposely slightly off-target to give the best view to the science instrumentation.

Image: This first Rosetta image was taken by its Navigation Camera (NAVCAM) on 28 June 2005 between 08:45 and 09:15 CEST, and is a composite of 20 exposures of 30 seconds each. The comet is the fuzzy object with the tail in the lower left of the image. The faintest stars visible in this image are about 13th magnitude, the bright star in the upper left is about 8th magnitude. The image covers about 0.5 degrees square, and celestial north is to the right. Credits: ESA

The NAVCAM system on board Rosetta was activated for the first time on 25 July 2004. This system, comprising two separate independent camera units (for back-up), will help to navigate the spacecraft near the nucleus of Comet 67P/Churyumov-Gerasimenko in ten years time.

In the meantime though, the cameras can also be used to track other objects, such as Comet Tempel 1, and the two asteroids that Rosetta will be visiting during its long cruise, Steins and Lutetia.

The cameras perform both as star sensors and imaging cameras (but not with the same high resolution as some of its other instruments), and switch functions by means of a refocusing system in front of the first lens.

The magnitude of Comet Tempel 1 is at the detection limit of the camera: it is not as easily visible in the raw image and the image here is a composite of 20 exposures of 30 seconds each.

Deep Impact sky map


Image: This is a computer-generated map of the sky showing the area imaged by Rosetta's NAVCAM on 28 June 2005, the location of the comet and some brightnesses of stars in the field of view for comparison. Credits: ESA

The comet is the fuzzy object with the tail in the lower left of the image. The faintest stars visible in this image are about 13th magnitude, the bright star in the upper left is about 8th magnitude. The image covers about 0.5 degrees square, and celestial north is to the right.

Source: ESA

Explore further: Bad weather delays SpaceX launch with 3-D printer

add to favorites email to friend print save as pdf

Related Stories

Rosetta's lander Philae will target Site J

Sep 15, 2014

(Phys.org) —Rosetta's lander Philae will target Site J, an intriguing region on Comet 67P/Churyumov–Gerasimenko that offers unique scientific potential, with hints of activity nearby, and minimum risk ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

Image: Rosetta comet observed with Very Large Telescope

Sep 08, 2014

(Phys.org) —Since early August 2014, Rosetta has been enjoying a close-up view of comet 67P/Churyumov–Gerasimenko. Meanwhile, astronomers on Earth have been busy following the comet with ground-based ...

A map of comet 67P/Churyumov-Gerasimenko

Sep 09, 2014

High-resolution images of comet 67P/Churyumov-Gerasimenko reveal a unique, multifaceted world. ESA's Rosetta spacecraft arrived at its destination about a month ago and is currently accompanying the comet ...

Recommended for you

Internet moguls Musk, Bezos shake up US space race

12 hours ago

The space race to end America's reliance on Russia escalated this week with a multibillion dollar NASA award for SpaceX's Elon Musk and an unexpected joint venture for Blue Origin's Jeff Bezos.

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

User comments : 0