A giant step toward tiny functional nanowires

Jun 30, 2005

Carving a telephone pole is easy if you have the right tools, say a power saw and some large chisels. And with some much tinier tools you could even carve a design into a paper clip if you wanted to. But shrink your sights down to the nanoscale, to a nanowire that is 1,000 times smaller than the diameter of a paper clip, and you find there are no physical tools to do the job properly.

So a team of Northwestern University scientists turned to chemistry and developed a new method that can routinely and cheaply produce nanowires with gaps as small as five nanometers wide -- a feat that is unattainable using conventional lithographic techniques. The results will be published in the July 1 issue of the journal Science.

Carved gaps are essential to a nanowire's function, and controlling those gaps would allow scientists and engineers to design with precision devices ranging from tiny integrated circuits to gene chips and protein arrays for diagnostics and drug discovery.

"With miniaturization happening across so many fields, our existing tools -- our chisels of a sort -- can't control the shapes and spacing of these small structures," said Chad A. Mirkin, director of Northwestern's Institute for Nanotechnology, who led the research team. "Our method allows us to selectively introduce gaps into the wires. These gaps can be filled with molecules, making them components for building small electronic and photonic devices or chemical and biological sensors."

The development of sophisticated nanoelectronics, said Mirkin, depends on the ability to fabricate and functionalize electrode gaps less than 20 nanometers wide for precise electrical measurements on nanomaterials and even individual molecules. While conventional techniques can't make gaps much smaller than 20 nanometers wide, Mirkin's method, called on-wire lithography, or OWL, has been able to produce gaps as small as 2.5 nanometers wide.

Mirkin and his team made the notched structures by first depositing into a porous template segmented nanowires made of two materials, one that is resistant to wet-chemical etching (gold) and one that is susceptible (nickel). The template is then dissolved, releasing the nanowires. Next, the wires are dispersed on a flat substrate, and a thin layer of glass is deposited onto their exposed faces. They are then suspended in solution, and a selective wet-chemical etching removes the nickel, leaving gold nanowires with well-defined gaps where the nickel used to be. (The glass is used as a bridging material, to hold the nanowire together.)

Using the OWL method, the researchers prepared nanowires with designed gaps of 5, 25, 40, 50, 70, 100, 140 and 210 nanometers wide. (A nanometer is one billionth of a meter or roughly the length of three atoms side by side. A DNA molecule is 2.5 nanometers wide.) In recent days, they have refined the technique to be able to make gaps as small as 2.5 nanometers wide.

"With dip-pen nanolithography, we can then drop into these gaps many different molecules, depending on what function we want the structure to have," said Mirkin, also George B. Rathmann Professor of Chemistry. "This really opens up the possibility of using molecules as components for a variety of nanoscale devices."

In addition to Mirkin, other authors on the Science paper are Lidong Qin (lead author), Sungho Park and Ling Huang of Northwestern University.

Source: Northwestern University

Explore further: Nanoscale production line for the assembly of biological molecules

add to favorites email to friend print save as pdf

Related Stories

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

A narrower spectrum for a wider view of matter

Jul 11, 2014

Condensed matter physicists, who study the physics of solids and liquids, often use a technique called "inelastic scattering," in which they bounce photons or neutrons of selected energy off a material and ...

New optical sensors swell when exposed to target gas

Jun 17, 2014

Using microscopic polymer light resonators that expand in the presence of specific gases, researchers at MIT's Quantum Photonics Laboratory have developed new optical sensors with predicted detection levels ...

Short nanotubes target pancreatic cancer

Jun 05, 2014

(Phys.org) —Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University ...

Recommended for you

Tiny graphene drum could form future quantum memory

3 hours ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

User comments : 0