Fusion technology: from ANU to the world

Jun 30, 2005
Fusion technology

Technology pioneered at ANU that could see the future of power generation become clean and green has come a step closer today with the announcement of an international development to harness fusion technology.
Australian scientist Sir Mark Oliphant is regarded as the discoverer of the process of fusion in 1932. He founded fusion plasma research at ANU in the early 1950s, which continues today.

Fusion uses plasma physics — the process which powers the sun — to generate power with minimal greenhouse gas emissions. Fusion occurs when the hydrogen isotopes deuterium and tritium are placed under great pressure.

A major project to begin large-scale investigation into the potential of fusion technology was announced overnight, with the $10 billion International Thermonuclear Experimental Reactor (ITER) to be built in Cadarache, in southern France.

ITER will be owned and funded by the United States, Russia, China, Japan, South Korea and the European Union.

Dr Matthew Hole from the ANU Research School of Physical Sciences and Engineering says it is a major move towards truly ‘green’ power.

“Unlike traditional fossil fuel and nuclear power plants, fusion reactors produce minimal greenhouse gas emissions with short-lived radioactive waste, by comparison to fission. They’re also inherently safe, with no possibility of the reaction itself running out of control.

“What’s exciting about it is that it has near-zero greenhouse gas emissions and there’s a virtually limitless quantity of fuel. It’s green energy that will hopefully power civilization in the future.”

Today, the H1 Major National Research Facility at ANU is considered to be at the forefront of fundamental fusion research in Australia.

The H1 experiment, which confines the hot plasma in flexible magnetic fields, is designed to provide a test bed for fundamental plasma research.

Dr Hole says it will be at least another 30 years before the commercial development of fusion energy becomes a possibility, but in the meantime ANU researchers are continuing their work to better understand the fusion process.

Dr Hole leads an Australian group of scientists and engineers from universities around the country, the Australian ITER Forum, which aims to advance fusion science in Australia and promote an Australian role in the ITER project in France.

Source: Australian National University

Explore further: After 13 years, progress in pitch-drop experiment (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Taming 900 vortices gives plasma energy insight

Jan 05, 2007

ANU researchers have come closer to understanding how energy is retained in turbulent systems that self-organise - such as the atmosphere, the universe and plasma - after designing a simple experiment in their ...

Recommended for you

Better thermal-imaging lens from waste sulfur

2 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

14 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...