Fusion technology: from ANU to the world

Jun 30, 2005
Fusion technology

Technology pioneered at ANU that could see the future of power generation become clean and green has come a step closer today with the announcement of an international development to harness fusion technology.
Australian scientist Sir Mark Oliphant is regarded as the discoverer of the process of fusion in 1932. He founded fusion plasma research at ANU in the early 1950s, which continues today.

Fusion uses plasma physics — the process which powers the sun — to generate power with minimal greenhouse gas emissions. Fusion occurs when the hydrogen isotopes deuterium and tritium are placed under great pressure.

A major project to begin large-scale investigation into the potential of fusion technology was announced overnight, with the $10 billion International Thermonuclear Experimental Reactor (ITER) to be built in Cadarache, in southern France.

ITER will be owned and funded by the United States, Russia, China, Japan, South Korea and the European Union.

Dr Matthew Hole from the ANU Research School of Physical Sciences and Engineering says it is a major move towards truly ‘green’ power.

“Unlike traditional fossil fuel and nuclear power plants, fusion reactors produce minimal greenhouse gas emissions with short-lived radioactive waste, by comparison to fission. They’re also inherently safe, with no possibility of the reaction itself running out of control.

“What’s exciting about it is that it has near-zero greenhouse gas emissions and there’s a virtually limitless quantity of fuel. It’s green energy that will hopefully power civilization in the future.”

Today, the H1 Major National Research Facility at ANU is considered to be at the forefront of fundamental fusion research in Australia.

The H1 experiment, which confines the hot plasma in flexible magnetic fields, is designed to provide a test bed for fundamental plasma research.

Dr Hole says it will be at least another 30 years before the commercial development of fusion energy becomes a possibility, but in the meantime ANU researchers are continuing their work to better understand the fusion process.

Dr Hole leads an Australian group of scientists and engineers from universities around the country, the Australian ITER Forum, which aims to advance fusion science in Australia and promote an Australian role in the ITER project in France.

Source: Australian National University

Explore further: Atomic trigger shatters mystery of how glass deforms

add to favorites email to friend print save as pdf

Related Stories

Lockheed Martin pursues compact fusion reactor concept

40 minutes ago

Lockheed Martin is making news this week with declarations about putting the Atomic Age on Restart and advancing in the realm of energy. "We are on the fast track to developing compact nuclear fusion reactors ...

Recommended for you

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 0