Deep sea algae connect ancient climate, carbon dioxide and vegetation

Jun 22, 2005

Assistant Professor Mark Pagani in the Department of Geology and Geophysics at Yale and his colleagues mapped the first detailed history of atmospheric carbon dioxide between 45 - 25 million years ago based on stable isotopes of carbon in a National Science Foundation study reported in Science Express.

"Through the energy we consume, each of us makes a contribution to increasing greenhouse gasses, such as carbon dioxide and methane, in the Earth's atmosphere," said Pagani. "To understand the implications of these actions for the future, scientists look to the past to gain a better understanding of Earth's climate system under high greenhouse gas conditions." The findings were based on calibration of carbon-containing compounds produced by ancient sea surface algae that were recently isolated in deep sea drill cores.

The data indicates that between 45 - 34 million years ago the atmospheric carbon dioxide level was up to five times greater than today, with a sharp decrease and then stabilization to near modern day levels between 34 - 25 million years ago.

During the early part of the Paleogene Period, from 65 - 34 million years ago, global climates were much warmer than today with very little ice present at the poles. The boundary of the Oligocene and Eocene Epochs 33.7 million years ago was marked by rapid global cooling and the formation of large continental ice sheets on the Antarctic.

"Before this study, the relationship between the global climate and the concentration of carbon dioxide in the atmosphere during the late Eocene and Oligocene was largely unknown," said Pagani, who is recognized for his reconstruction of past atmospheric carbon dioxide levels between 25 million and eight million years ago.

They also present intriguing evidence that the sharp drop in carbon dioxide level, between 33 - 25 million years ago, prompted the origin of economically important land plants that are sensitive to atmospheric carbon dioxide levels, such as corn and sugarcane.

"The onset and stabilization of ice sheets at the same time as a decline in carbon dioxide illustrates the importance of atmospheric carbon dioxide as an agent of both climate and biological change," Pagani said.

Collaborators were Brett Tipple from Yale, James C. Zachos and Stephen Bohaty at University of California, Santa Cruz and Katherine Freeman at Pennsylvania State.

Citation: Science Express on line (June 16, 2005).

Source: Yale University

Explore further: SpaceX cargo capsule nears International Space Station

add to favorites email to friend print save as pdf

Related Stories

Video: MAVEN set to slide into orbit around Mars

Sep 17, 2014

A NASA mission to Mars led by the University of Colorado Boulder is set to slide into orbit around the red planet this week after a 10-month, 442-million mile chase through the inner solar system. 

Coral growth rate plummets in 30-year comparison

Sep 17, 2014

A team of researchers working on a Carnegie expedition in Australia's Great Barrier Reef has documented that coral growth rates have plummeted 40% since the mid-1970s. The scientists suggest that ocean acidification ...

Recommended for you

Getting to the root of the problem in space

22 minutes ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

2 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

2 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Image: NGC 6872 in the constellation of Pavo

3 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

4 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

User comments : 0