Deep sea algae connect ancient climate, carbon dioxide and vegetation

Jun 22, 2005

Assistant Professor Mark Pagani in the Department of Geology and Geophysics at Yale and his colleagues mapped the first detailed history of atmospheric carbon dioxide between 45 - 25 million years ago based on stable isotopes of carbon in a National Science Foundation study reported in Science Express.

"Through the energy we consume, each of us makes a contribution to increasing greenhouse gasses, such as carbon dioxide and methane, in the Earth's atmosphere," said Pagani. "To understand the implications of these actions for the future, scientists look to the past to gain a better understanding of Earth's climate system under high greenhouse gas conditions." The findings were based on calibration of carbon-containing compounds produced by ancient sea surface algae that were recently isolated in deep sea drill cores.

The data indicates that between 45 - 34 million years ago the atmospheric carbon dioxide level was up to five times greater than today, with a sharp decrease and then stabilization to near modern day levels between 34 - 25 million years ago.

During the early part of the Paleogene Period, from 65 - 34 million years ago, global climates were much warmer than today with very little ice present at the poles. The boundary of the Oligocene and Eocene Epochs 33.7 million years ago was marked by rapid global cooling and the formation of large continental ice sheets on the Antarctic.

"Before this study, the relationship between the global climate and the concentration of carbon dioxide in the atmosphere during the late Eocene and Oligocene was largely unknown," said Pagani, who is recognized for his reconstruction of past atmospheric carbon dioxide levels between 25 million and eight million years ago.

They also present intriguing evidence that the sharp drop in carbon dioxide level, between 33 - 25 million years ago, prompted the origin of economically important land plants that are sensitive to atmospheric carbon dioxide levels, such as corn and sugarcane.

"The onset and stabilization of ice sheets at the same time as a decline in carbon dioxide illustrates the importance of atmospheric carbon dioxide as an agent of both climate and biological change," Pagani said.

Collaborators were Brett Tipple from Yale, James C. Zachos and Stephen Bohaty at University of California, Santa Cruz and Katherine Freeman at Pennsylvania State.

Citation: Science Express on line (June 16, 2005).

Source: Yale University

Explore further: Venus Express spacecraft, low on fuel, does delicate dance above doom below

add to favorites email to friend print save as pdf

Related Stories

'Green Revolution' changes breathing of the biosphere

Nov 19, 2014

The intense farming practices of the "Green Revolution" are powerful enough to alter Earth's atmosphere at an ever-increasing rate, boosting the seasonal amplitude in atmospheric carbon dioxide to about 15 ...

A closer look at carbon dioxide

Nov 18, 2014

A new simulation of carbon dioxide in Earth's atmosphere provides an ultra-high-resolution look at how the key greenhouse gas moves around the globe and fluctuates in volume throughout the year. These three close-up views ...

Recommended for you

Orion on track at T MINUS 1 Week to first blastoff

11 hours ago

At T MINUS 1 Week on this Thanksgiving Holiday, all launch processing events remain on track for the first blast off of NASA's new Orion crew vehicle on Dec. 4, 2014 which marks the first step on the long ...

Staying warm: The hot gas in clusters of galaxies

13 hours ago

Most galaxies lie in clusters, groupings of a few to many thousands of galaxies. Our Milky Way galaxy itself is a member of the "Local Group," a band of about fifty galaxies whose other large member is the ...

Bad weather delays Japan asteroid probe lift off

17 hours ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.