New NIST Method Improves Accuracy of Spectrometers

Jun 16, 2005

Measurements of the intensity of light at different wavelengths can be made more accurately now, thanks to a new, simple method for correcting common instrument errors. The new method, developed by researchers at the National Institute of Standards and Technology (NIST), will benefit fields such as color measurement, lighting development, remote sensing, biotechnology and astronomy.

The NIST method improves the measurement accuracy of spectrometers, devices that measure optical radiation at different wavelengths. Spectrometers are used widely in industrial settings and academic research to analyze the emissions from lamps or other light sources, as well as to analyze optical properties of materials. The NIST method corrects errors arising from the presence of stray light, unwanted scattered radiation within an instrument.

Stray light is often the major source of measurement uncertainty for commonly used spectrometers. It can cause unexpectedly large systematic errors, even as much as 100 percent depending upon the application, when an instrument tries to measure a very low level of radiation at some wavelength while there are relatively high levels in other wavelength regions. The new NIST method nearly eliminates stray light errors, to a level less than 0.001 percent of the total signal, a desirable level for most industrial and scientific applications. This allows very accurate measurement of low-power components of radiation and accurate measurements across a large dynamic range of intensities.

NIST researchers implemented and validated the method using a commercial CCD-array spectrograph, which measures light in the visible region instantly. They characterized the response to monochromatic emissions from tunable lasers that covered the instrument's full spectral range. Calculations were made using the measured data to produce a matrix that quantified the magnitude of the stray-light signal for every element (or pixel) of the detector array for every wavelength of light. The matrix then was used to correct the instrument's output signals for stray light. The method is simple and fast enough to be incorporated into an instrument's software to perform real-time stray-light corrections without much reduction in the instrument's speed.

NIST recently began offering a special calibration service to characterize spectrometers for stray light using the new method. Plans are being made to transfer the technique to industry, and a technical paper is in preparation. For further information about the calibration service, contact Yuqin Zong at yzong {at} nist.gov, or (301) 975-2332.

Source: NIST

Explore further: Physics professor publishes exact solution to model Big Bang and quark gluon plasma

add to favorites email to friend print save as pdf

Related Stories

Microbiome may have shaped early human populations

5 hours ago

We humans have an exceptional age structure compared to other animals: Our children remain dependent on their parents for an unusually long period and our elderly live an extremely long time after they have ...

Big-data analysis reveals gene sharing in mice

5 hours ago

Rice University scientists have detected at least three instances of cross-species mating that likely influenced the evolutionary paths of "old world" mice, two in recent times and one in the distant past.

Recommended for you

What's next for the Large Hadron Collider?

7 hours ago

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

Unraveling the light of fireflies

11 hours ago

How do fireflies produce those mesmerizing light flashes? Using cutting-edge imaging techniques, scientists from Switzerland and Taiwan have unraveled the firefly's intricate light-producing system for the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.