New Experiments Will Shed Light On Matter And Antimatter

Jul 22, 2004

If the laws of physics were precisely the same for matter and antimatter, you wouldn't be reading this. All matter, as we know it, would have been converted into light after the Big Bang. To explore the fundamental differences between matter and antimatter, physicists need a vast amount of data. In early July, the PEP-II accelerator at the Stanford Linear Accelerator Center, one of the world's chief suppliers of these data, reached a new milestone: It is delivering three times as many particle collisions per second as the machine was designed to produce.

"This remarkable achievement allows us to perform much more precise measurements that will shed light on matter-antimatter asymmetries," said physicist Marcello Giorgi, a spokesman for the BaBar collaboration, which has just published its 100th paper based on data from PEP-II. "These asymmetries are fundamental features of the laws of nature that played a major role in the evolution of the universe."

The Big Bang, according to the most basic physical laws, created equal amounts of matter and antimatter. Whenever a particle of matter meets its antimatter twin, they annihilate each other, leaving behind only a burst of energy.

The particles of energy ­ photons ­ zipping through the universe today are evidence that a lot of annihilations took place. However, the fact that we are here is proof that the annihilation was incomplete: There is one particle of matter for every billion photons. It's the cause of this one-in-a-billion imbalance that scientists are trying to understand.

Researchers designed PEP-II to collide electrons and their antimatter counterparts, positrons, at the precise energy that produces an abundance of short-lived pairs of particles and antiparticles called B mesons, which decay spontaneously into other particles of matter and antimatter. Because the B meson is relatively heavy, it can decay into matter and antimatter in more ways than lighter particles can. If there were no difference between matter and antimatter, both the B meson and the anti-B meson would decay at exactly the same rate.

Some decay patterns are very rare. The BaBar collaboration has seen some decays only a few times in 10 million events. Were it not for the multitude of B mesons PEP-II is providing, studies of such unusual particle behavior would be impossible.

In addition, a bigger data sample means better results. If you can only flip a penny 10 times and you get heads seven times, you could conclude that it will turn up heads 70 percent of the time. But if you flip the penny 100 times, you're likely to see that heads turns up closer to half the time.

The 600 physicists from around the world in the BaBar collaboration are now working around the clock to see what insights the new data hold. Matthew Graham, a University of Wisconsin postdoctoral fellow, is among those studying a process that caused excitement when a rival collaboration called Belle, which is based at a Japanese accelerator laboratory, announced a result that has just a 1 percent chance of agreeing with the currently prevailing theory, known as the Standard Model. BaBar's result at that time had a 60 percent chance of agreeing with the Standard Model. The discrepancy could simply be due to statistical chance, or it could be much-sought-after evidence of the Standard Model's Achilles' heel.

Both collaborations have significantly more data for this round of analysis, so it wouldn't be a surprise to see the results change when both collaborations present their latest results in mid-August at the International Conference on High Energy Physics, to be held this year in Beijing.

Ultimately, as Giorgi points out, both collaborations "are on the same adventure. We hope to open a window on new laws of physics."

Relevant Web URLs:

Stanford Report, July 21, 2004: news-service.stanford.edu/news… /luminosity-721.html
BaBar Collaboration Home Page: www.slac.stanford.edu/BFROOT/
BaBar Public Information: www-public.slac.stanford.edu/babar/

Source: Stanford Linear Accelerator Center

Explore further: New complex oxides could advance memory devices

add to favorites email to friend print save as pdf

Related Stories

Entrepreneurs aren't overconfident gamblers

1 hour ago

Leaving one's job to become an entrepreneur is inarguably risky. But it may not be the fear of risk that makes entrepreneurs more determined to succeed. A new study finds entrepreneurs are also concerned about what they might ...

New complex oxides could advance memory devices

1 hour ago

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

User comments : 0