New radiofrequency device

Jun 03, 2005

Physical Review Letters, has recently published an article about a radiofrequency device that was designed by a team of researchers at the Public University of Navarra, together with teams from the University of Seville and the Barcelona Universidad Autónoma.

The article is entitled, “Babinet Principle Applied to the Design of Metasurfaces and Metamaterials”.

The article is a result of research work between teams from the three universities on the theme of applications of what are known as meta-materials that have negative refractive index. Specifically, the device designed may be used in mobile communications systems, WiFi, aerials, transmitters, and so on.

A phenomenon of great scientific interest

In the published article, researchers have experimentally validated a phenomenon that has been of great scientific interest of late – that known as left-handed propagating or transmission media. These are media that have curious electromagnetic properties and that are not found in nature as such, i.e. media propagated in waves that do not appear in Nature.

Research was started on this in the 1960s – but as mere speculative theory – and it was not possible to make any kind of medium with the technology existing at the time. Research was taken up again in the late 1990s, when a series of technological solutions was put forward that enabled the design of a medium that could be manufactured and, in the early 2000s, a medium was developed.

The work of the Navarre researchers is on these lines, specifically applying them to the field of flat microwave circuits. The published article shows the application of these types of structures in flat technology, proposing, moreover, a new structure – that of complementary rings that interchange roles between metallic structures and air. The advantage of this is that it enables the making of a series of circuits that otherwise would be impossible and which, moreover, give quite an optimum response in that they have few losses and these are of small magnitude.

These structures can be applied to any high-range radio frequency device, i.e. mobile communications systems, WiFi, aerials, transmitters, and so on. Moreover, with the design of the flat circuit, the researchers have come up with another development in bidimensional structure which can be employed for shielding radio waves in a building or a room in such a way that interferences in wireless communications are avoided. This involves a series of laminas known as meta-surfaces.

Currently, researchers are continuing their investigations perfecting these surfaces. Moreover, given the optimum result achieved, they hope to make further advances in their applications.

Source: University of Navarre (by Iñaki Casado Redin)

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Behind the dogmas of good old hydrodynamics

Mar 26, 2015

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

Cervantes DNA confirmation unlikely, KU expert says

Mar 20, 2015

Anthropologists are seeking to identify whether 400-year-old remains discovered this week are those of Spanish author Miguel de Cervantes, who wrote "The Ingenious Gentleman Don Quixote of La Mancha."

Quantum many-body systems on the way back to equilibrium

Feb 23, 2015

Considering that one cubic centimetre of matter already contains about 1019 to 1023 particles, it is hard to imagine that physicists nowadays can prepare ensembles comprising only some hundred, or even just ...

Recommended for you

New insights found in black hole collisions

14 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

14 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

18 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

21 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.