Space Telescopes Sharpen View of Deep Impact Target

Jun 02, 2005
Space Telescopes Sharpen View of Deep Impact Target

On July 4th, the University of Maryland-led NASA mission known as Deep Impact will get its one and only shot at its target, comet Tempel 1. Maryland astronomer Michael A'Hearn and his mission colleagues anticipate a hit on the comet that will knock out some of its "stuffing" for all the world to see. And some of their preparation is built on key observations of the comet by two of NASA's "eyes in the sky" -- the Spitzer Space Telescope and Hubble Space Telescope.

Image: These artist's concepts of Tempel 1 simulate an optical view of the comet (left), next to the simulated infrared view (right). The images illustrate the comet’s shape, reflectivity, rotation rate and surface temperature, based on information from NASA’s Hubble Space Telescope and Spitzer Space Telescope. Measurements from the Great Observatories indicate that the comet is a matte black object roughly 14 by 4 kilometers (8.7 by 2.5 miles), or about one-half the size of Manhattan. Spitzer detects the comet’s infrared energy or heat, depicted by the reddish glow. The sunlit side of the nucleus is glowing warmly, and the nightside is about the temperature of deep space. Courtesy NASA

Early in 2004, nearly a year before the mission launched, the Great Observatories studied comet Tempel 1 and together came up with the best assessments of the comet's size, shape, reflectivity and rotation rate.

"Spitzer was crucial in pinning down the comet's size, and the combination of Spitzer and Hubble was vital to learning its reflectivity and rotation rate," said A'Hearn, leader of the Deep Impact mission and principal investigator for the Spitzer and Hubble observations. "These are important findings that should help Deep Impact collide with its target and show us what this comet is made of."

New Light on a Cold Dark Object

Previous observations of Tempel 1 taken with ground-based telescopes showed that the comet is dark and oblong, with a width of about a few kilometers. Spitzer and Hubble refined these measurements, revealing a deep black comet that is probably about 14 by 4 kilometers (8.7 by 2.5 miles), or roughly one-half the size of Manhattan.

"Even tiny adjustments to our model of Tempel 1 are crucial to hitting the target and setting camera exposure times," said Carey Lisse, Johns Hopkins University, Baltimore, Md., lead author of a June 1 Astrophysical Journal Letters paper on the Spitzer observations of Tempel 1.

The Deep Impact spacecraft was launched in January of 2005. Its mission is to study the primordial soup of our solar system, which is sealed away inside comets. Early on July 3, some 24 hours before impact, the Deep Impact spacecraft will separate into two parts. One part -- the impactor -- will place itself in the path of the dusty snowball. The second half -- the fly-by spacecraft -- will maneuver out of harm's way and slow its speed so that at impact it will have a prime, but relatively safe, viewing position to the side and front of the comet.

After the impactor spacecraft is released, its specialized autonavigation software will steer it toward the sunlit portion of Tempel 1's core, or nucleus. To program this software, mission planners at NASA's Jet Propulsion Laboratory, which manages the Deep Impact project, needed to know how big and reflective Tempel 1's surface is. Since its surface can't be observed directly from Earth, scientists first turned to Spitzer's infrared eyes to measure its size.

When viewing a comet in visible light from very far away, only reflected sunlight can be seen, so a big, dark comet can look the same as a highly reflective, small comet. In infrared light, a comet's radiated heat is measured, providing a direct look at its size.

Once the size of Tempel 1 was known, the scientists were able to calculate how reflective its surface must be in order to produce the amount of reflected, visible light observed by Hubble. They found that Tempel 1 reflects only four percent of the sunlight that falls on it. "Knowing the reflectivity also tells us how to set up our cameras," added Lisse. "Like photographers, it's important for us to know our subject before the shoot."

Tempel 1's shape and rotation rate (about 2 days) were derived from long-term observations made by various telescopes, including Hubble, Spitzer and the University of Hawaii's 2.2-meter telescope at Mauna Kea.

In addition to Deep Impact, at least 30 other telescopes around the world, including Spitzer, Hubble and the Chandra X-ray Observatory, will be watching the dramatic cometary impact. By carefully analyzing the material that is blown out of the interior of the comet, this global network of telescopes will assemble a list of the raw ingredients that went into making the planets in our solar system.

The overall Deep Impact mission management for this NASA Discovery class program is conducted by the University of Maryland in College Park, Md. Deep Impact project management is handled by the Jet Propulsion Laboratory in Pasadena, Calif. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation, Boulder, Colo.

Links:
Spitzer Space Telescope
Hubble Space Telescope

Source: University of Maryland

Explore further: Video gives astronaut's-eye view inside NASA's Orion spacecraft

add to favorites email to friend print save as pdf

Related Stories

Frost-covered chaos on Mars

Nov 27, 2014

Thanks to a break in the dusty 'weather' over the giant Hellas Basin at the beginning of this year, ESA's Mars Express was able to look down into the seven kilometre-deep basin and onto the frosty surface ...

A timeline of deep-space comet encounters

Nov 10, 2014

12th November 2014. That is the date in which Rosetta, led by the European Space Agency, will release its lander Philae to touchdown on Comet 67P/Churyumov-Gerasimenko in outer space.

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.