Hitachi, Renesas Develop Technology to Enable Interconnection of Stacked Chips at Room Temperature

Jun 02, 2005
Cross secition of test sample

The new technology enables a room-temperature bonding of 10 stacked chip layers in a package with a thickness of 1 mm or less

Hitachi, Ltd. and Renesas Technology Corp. today announced a new stacked chip technology that uses a through-hole interconnection method to enable chips to bond at room temperature. The new technology eliminates the need for wire bonding and reduces package thickness by more than 60% for the most advanced SiP (System in Package) products. The method offers a new packaging technology option for developing 3D-stacked SiP products.

With this new packaging technique, LSI chips that are between 30 and 50 µm thick are fashioned with through-hole electrodes between the top and bottom sides and gold stud bumps. It then allows the bumps and through-hole electrodes to connect by applying a compressive force at room temperature.

Details of this new technology will be presented at Electronic Components and Technology Conference 2005 (ECTC 2005) being held in Lake Buena Vista, Florida, U.S.A. from May 31, 2005.

Using this technology, the package thickness of a two-layer SiP is reduced by 60% or more, from the current 1.25 mm to 0.5 mm or less. It also enables a package thickness of 1 mm or less to be achieved when stacking 10 LSI chip layers. In addition, chip-to-chip interconnection is performed at room temperature to simplify the manufacturing process.

The chip-stacking technology has several advantages over current stacking methods. Today most SiP products achieve electrical interconnection between chips using wire bonding, but the need to provide wire space limits package thickness. Also, since chip-to-chip connections are made via package substrate wiring, the number of package substrate layers increases, leading to higher substrate costs. In addition, the longer wiring required for connecting stacked chips causes lower performance. The new technology eliminates these issues for chip-to-chip bonding and will allow future SiP products to be made smaller and thinner, while offering higher speed and larger capacity.

Features of the newly developed technology are as follows:

(1) Room temperature chip-to-chip interconnection using caulking1 technique
For chip-to-chip interconnection, a mechanical caulking operation is used that makes use of the plasticity of gold stud bumps. This enables the gold stud bumps and through-holes to be interconnected electrically at room temperature simply by applying force. This bonding technique can also be used for room-temperature connection between a chip and substrate. While conventional through-hole electrode (interconnection) techniques using solder or similar metallic bumps require high-temperature bonding, this new technology simplifies the manufacturing process by enabling bonding at room temperature.

(2) Through-hole electrode formation on back-side of wafer by means of a low-temperature process
Through-hole electrodes are formed on the back-side of a wafer as thin as 30 to 50 µm. As these through-hole electrodes are fixed to the glass wafer with a removable adhesive, they must be formed at a temperature lower than the maximum temperature that the adhesive can withstand. With this new process, the etching and film-forming occurs at a temperature less than half that previously required (less than 150ºC). Furthermore, the breakdown voltage between the through-holes attains the same level as inside the LSIs.

Note: 1. Caulking : Making a firm connection by using differences in deformation between materials.

Explore further: BofA to refund Apple Pay customers charged twice

add to favorites email to friend print save as pdf

Related Stories

EU project sails off to study Arctic sea ice

Aug 29, 2014

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

ACEs are high with space station colloidal research

Aug 25, 2014

One global marketer took to space to find a way to be leaner and greener back on Earth. For Procter & Gamble (P&G), product innovation and improvement relied on use of the International Space Station (ISS) ...

Patent solution in a canning jar

Aug 12, 2014

From shopping bags to shampoo bottles to plastic watering cans – many everyday objects both large and small might look very different if it hadn't been for the invention of chemist and Max Planck researcher ...

Recommended for you

Tablets, cars drive AT&T wireless gains—not phones

2 hours ago

AT&T says it gained 2 million wireless subscribers in the latest quarter, but most were from non-phone services such as tablets and Internet-connected cars. The company is facing pricing pressure from smaller rivals T-Mobile ...

Twitter looks to weave into more mobile apps

2 hours ago

Twitter on Wednesday set out to weave itself into mobile applications with a free "Fabric" platform to help developers build better programs and make more money.

Blink, point, solve an equation: Introducing PhotoMath

3 hours ago

"Ma, can I go now? My phone did my homework." PhotoMath, from the software development company MicroBlink, will make the student's phone do math homework. Just point the camera towards the mathematical expression, ...

Google unveils app for managing Gmail inboxes

4 hours ago

Google is introducing an application designed to make it easier for its Gmail users to find and manage important information that can often become buried in their inboxes.

User comments : 0