White-light laser is basis of new optical tweezers and microscope

May 27, 2005

Penn State engineers have used a "white-light laser" to produce a new type of optical "tweezers" that not only traps, holds and moves microscopic objects but also can perform characterization of the object via spectroscopy at the same time.

Dr. Zhiwen Liu, assistant professor of electrical engineering who leads the project, says, "Our team is among the first to demonstrate the 3-dimensional trapping and manipulation of microscopic objects using white laser light. Our novel tweezers, thanks to the broadband nature of white light, also have the potential to perform optical scattering spectroscopy of the trapped object over a broad wavelength range."

Through optical spectroscopy, researchers can probe the trapped particle's size, shape, refractive index and chemical composition. In experiments, so far, the team has demonstrated the tweezers's capabilities with three kinds of polymer microspheres of different sizes.

The new tweezers were described Friday, May 27, in a paper, “White Light Supercontinuuum Optical Tweezers,” presented at the Conference on Laser and Electro-Optics/Quatum Electronics and Laser Science in Baltimore Md. The authors are graduate students Peng Li and Kebin Shi as well as Liu. The tweezers were also described in the paper, “Manipulation and Spectroscopy of a Single Particle by Use of White-light Optical Tweezers,” published earlier this year in Optics Letters.

The Penn State researchers have also incorporated a white light laser into a confocal microscope system to speed image production while retaining the image clarity and ability to observe the object in layers available in conventional instruments. Images that require a second or more to be produced with a conventional confocal microscope need only tens of milliseconds in the white-light instrument.

Liu notes that many biological processes occur in milliseconds or less and the new confocal microscope has the potential to film them as they happen. He expects both the new tweezers and microscope to have applications not only in the biological and medical sciences but also in the microcircuit chip industry.

Propagating short laser pulses of infrared light, for example, in a photonic crystal fiber broadens its spectrum dramatically and generates supercontiuum white light. The white light produced in this way can be focused to a tiny spot just like a normal laser.

The Penn State researcher notes, "The broad spectrum of supercontinuum white light increases its information capacity and offers new opportunities for next generation optical information systems. "

The microscope was described in the paper, “Chromatic Confocal Microscopy Using Supercontiuum Light,” published last year in Optics Express.

The research was supported by start-up funds from Penn State's College of Engineering and Department of Electrical Engineering.

Source: Penn State

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Building a more versatile frequency comb

Feb 17, 2015

Frequency combs are the rulers of light. By counting a wavelength's many oscillations, they measure distance and time with extraordinary precision and speed.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.