Scientists devise method to study membrane proteins

Apr 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied using crystallography or nuclear magnetic resonance imaging. Their work is detailed in the March 23 issue of the “Proceedings of the National Academy of Sciences” (PNAS) and also on the cover of the journal. The paper can be found on the web at: http://www.pnas.org/cgi/content/full/101/12/4065.

“The majority of drugs on the market today are effective because they work on membrane proteins, but our basic knowledge about these proteins lags far behind that of water-soluble proteins,” said Lukas Tamm, professor of molecular physiology and biological physics at U.Va. “We need to develop systems to get enough of these membrane proteins expressed in a cell culture so we can measure their thermodynamic, or energetic, stability,” Tamm said. “This is of practical interest in designing proteins for therapeutic applications because the proteins need to be kept around for a long time. This protocol developed at U.Va. shows for the first time that these proteins can be taken out of their membrane environment and put back in without losing function,” Tamm said. “We also found that the thermodynamic stability, or energy difference, between the folded and unfolded form of membrane proteins depends on the strength of the membrane “rubber band” that the proteins sit in. This energy difference can be predicted, one key variable in the drug discovery process.”

In a commentary on the findings, also in the March 23 issue of PNAS, James Bowie, a professor with the Molecular Biology Institute at the University of California, Los Angeles, wrote that “the new work opens another door to a more quantitative description of the energetics protein-protein and protein-lipid interactions in the (membrane) bilayer… We are finally beginning to obtain quantitative information about membrane protein structure.”

Working with U.Va. colleague Heedeok Hong, Tamm used an aqueous (water) system and a compound called urea, that unravels proteins, to carry out folding studies on a membrane protein of the Escherichia coli bacterium called OmpA. Tamm and Hong demonstrated that the folding of OmpA into the lipid bilayers of a membrane is a reversible, two-state process. They also demonstrated that elastic forces in bilayers, such as curvature stress, can affect the folding of membrane proteins.


Explore further: Thermoelectric power plants could offer economically competitive renewable energy

add to favorites email to friend print save as pdf

Related Stories

Underfire Uber ramps up rider safety

5 hours ago

Uber is ramping up driver background checks and other security measures worldwide after the smartphone-focused car-sharing service was banned in New Delhi following the alleged rape of a passenger.

US probe links NKorea to Sony hacking

5 hours ago

A U.S. official says federal investigators have now connected the Sony Pictures Entertainment Inc. hacking to North Korea and are expected to make an announcement in the near future.

New York state bans fracking

5 hours ago

Governor Andrew Cuomo said Wednesday he would ban hydraulic fracking in New York State, citing health concerns about the controversial oil and gas drilling technique.

Sony cancels NKorea parody film release after threats

5 hours ago

Hollywood studio Sony Pictures on Wednesday abruptly canceled the December 25 release date of "The Interview," a parody film which has angered North Korea and triggered chilling threats from hackers.

Recommended for you

Quantum physics just got less complicated

5 hours ago

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.