Scientists coax gold particles to emit light strong enough to view single nanoparticles

May 23, 2005

Findings have implications for tracking disease, drugs at the molecular level

Researchers in the laboratory of Boston College Chemistry Professor John T. Fourkas have demonstrated that gold particles comparable in size to a molecule can be induced to emit light so strongly that it is readily possible to observe a single nanoparticle. Fourkas, in collaboration with postdoctoral researcher Richard Farrer and BC undergraduates Francis Butterfield and Vincent Chen, coaxed the particles into strong emission of visible light using a technique called multiphoton absorption induced luminescence (MAIL).

The most efficient gold nanoparticles could be observed at laser intensities lower than those commonly used for multiphoton imaging, in which specific tissues or cells -- cancer cells, for example -- are fluorescently-labeled using special stains that enable them to be studied.

"One of the most exciting aspects of this technique is that it paves the way for being able to observe behavior in living tissues at the single molecule level," said Fourkas. "The fluorescent molecules commonly used in multiphoton imaging give out only a limited amount of light, 'burn out' quickly under continuous observation, and are prone to blinking on and off.

"The gold particles, however, do not blink or burn out, even after hours of observation, and the brightest ones emit much more light than do molecules," he said. "We now have the ability to see single nanoparticles under conditions where people usually look at thousands or millions of stain molecules. This could allow us, for instance, to track a single molecule of a drug in a cell or other biological sample."

Other advantages of the technique are that the gold particles can be prepared easily, have very low toxicity, and can readily be attached to molecules of biological interest, said Fourkas. In addition, the laser light used to visualize the particles is at a wavelength range that causes only minimal damage to most biological tissue.

The findings will be published in the June issue of Nano Letters.

Source: Boston College

Explore further: New absorber will lead to better biosensors

add to favorites email to friend print save as pdf

Related Stories

Analyzing gold and steel – rapidly and precisely

4 hours ago

Optical emission spectrometers are widely used in the steel industry but the instruments currently employed are relatively large and bulky. A novel sensor makes it possible to significantly reduce their size ...

Nanoscience makes your wine better

Sep 17, 2014

One sip of a perfectly poured glass of wine leads to an explosion of flavours in your mouth. Researchers at Aarhus University, Denmark, have now developed a nanosensor that can mimic what happens in your ...

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Recommended for you

Nanoparticles give up forensic secrets

10 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

New absorber will lead to better biosensors

18 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

'Stealth' nanoparticles could improve cancer vaccines

20 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

21 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 0