World’s Most Precise 'Hard X-Ray' Nanoprobe Activated

May 19, 2005
World’s Most Precise 'Hard X-Ray' Nanoprobe Activated

Marking a major step forward in using X-rays to study some of the smallest phenomena in nature, the world’s first “hard X-ray” nanoprobe beamline was activated on March 15, 2005. The unique nanoprobe is one of the featured instruments at the new Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) user facility at Argonne National Laboratory. CNM researchers expect to soon be using the X-ray nanoprobe to study individual atoms, molecules, and the unique physical interactions that occur at the nanoscale, where features are measured in nanometers.

Image: X-rays from an APS undulator exiting the front end window of the nanoprobe beamline. Ionized air highlights the path of the beam.

The CNM’s x-ray nanoprobe beamline uses the world’s brightest X-rays, called “hard” X-rays, from Argonne’s Advanced Photon Source (APS). Hard X-rays can better penetrate deep inside matter and allow scientists to investigate the world around us at the scale of individual atoms and molecules. They are a perfect tool for unraveling tough questions about the strange things that occur at the nanometer scale, where materials behave very differently than do conventional materials, and the traditional laws of physics do not apply. At the nanoscale, the principles of temperature, electricity and magnetism are completely different, which makes the basic scientific research to be conducted using the CNM’s X-ray nanoprobe so important before commercial products and materials can be developed.

CNM’s X-ray nanoprobe will have a spatial resolution of 30 nanometers or better, the highest of any hard X-ray microscopy beamline in the world. It will offer fluorescence, diffraction, and transmission imaging in the spectral range of 3-30 keV, making it a valuable tool for studying nanomaterials and nanostructures, as well as embedded structures.

CNM facilities and research programs are accessible to independent researchers through a peer-reviewed proposal process. The CNM welcomes discussions of potential proposals, especially those exploring novel applications of our capabilities or involving more than one area of research. The next proposal deadline is June 15, 2005.

Source: Argonne National Lab

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Shell files new plan to drill in Arctic

23 minutes ago

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Aging Africa

35 minutes ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

Team pioneers strategy for creating new materials

13 minutes ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Team defines new biodiversity metric

47 minutes ago

To understand how the repeated climatic shifts over the last 120,000 years may have influenced today's patterns of genetic diversity, a team of researchers led by City College of New York biologist Dr. Ana ...

Mysteries of space dust revealed

52 minutes ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

NASA animation shows Hurricane Marie winding down

1 hour ago

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

Recommended for you

Tiny graphene drum could form future quantum memory

22 hours ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

User comments : 0