Biologists search for 'half-fusion'

May 16, 2005

Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of proteins that work in concert to allow cell membranes to fuse - with other cells or with membrane-encased packages of proteins and other chemicals that the cell needs to take in or release.

Though well-studied, the molecular details of membrane fusion remain mysterious. In particular, scientists don't understand how holes form between two membranes, but a new study by biochemists at Rice University and Iowa State University offers intriguing new clues about the nature of this process. The study is published in this month's issue of Nature Structural and Molecular Biology.

"Membrane fusion is one of the most basic processes of life," said James McNew, assistant professor of biochemistry and cell biology at Rice University. "It begins at fertilization and occurs billions of times a second in our bodies, and if it ever stops, we die."

For example, inside the cells in our brains, spines and nerves, membranes are used to seal up and transport tiny packets of signaling chemicals from the center of the cell to the outer cell membrane. These packets, or vesicles, wait just inside the cell membrane for the appropriate signal, and once they receive it, they fuse with the membrane and eject their contents into the surrounding tissue, causing an immediate chain reaction that keeps our hearts beating and allows us to move our muscles. Membrane fusion is also used to initiate disease.

"Some invading organisms like enveloped viruses use the fusion process to infect the cell," McNew said.

To understand membrane fusion, it helps to envision the basic structure of membranes. Just five billionths of meter across, membranes are bilayers, meaning they contain two separate layers, or sheets of fatty acids. Each of these sheets has a one side that is strongly attracted to water and one side that strongly repels it. The water-hating sides of the sheets stick tightly to one another, sealing out water on either side of the bilayer.

Additionally, all biological membranes are dotted with proteins, and some of these are called transmembrane proteins, meaning parts of them penetrate through the membrane like a needle through cloth. A large body of evidence suggests that a class of transmembrane proteins called SNAREs are responsible for driving membrane fusion during normal cellular activity. Exactly how they do this is unknown, but previous studies have suggested two possibilities.

One model proposes that the portion of the SNARE protein that crosses the membrane forms a pore-like connection that mixes both layers of the membrane in one step. The other theory suggests that the SNARE proteins mix the two separate layers of a membrane one at a time, generating an intermediate stated called "hemifusion" or half-fusion. During hemifusion, the outer, water-loving sides of two membranes become connected, and the inner water-loving layers do not. In this state, the combining cells or vesicles could transfer proteins and other material stuck to their outside layers, but they do not exchange any material that's locked inside. Hemifusion has been observed in non-biological membranes containing no proteins, but has been difficult to detect with SNARE proteins.

McNew and his Iowa State colleagues, Yeon-Kyun Shin, Zengliu Su, Fan Zhang and Yibin Xu, developed an ingenious method of tagging both inner and outer portions of the synthetic membranes with fluorescent dyes so they could use fluorescence spectroscopy to assay mixing of the inner and outer layers.

McNew and colleagues sought to find out if hemifusion was an intermediate fusion state in biological systems, so they created a test system that contained a lipid bilayer studed with SNARE proteins taken from bakers yeast. Using both normal SNAREs and a mutant variety, they were able to show that membrane fusion catalyzed by the SNARE machinery mixes the outer layer of the membrane separately from the inner layer -- a hallmark of hemifusion -- suggesting that a hemifusion intermediate can exist in biological systems and may well be the mechanism that all living cells utilize.

Preliminary data from follow-up studies indicate that these results are also generalizable to SNARE proteins from animals.

Source: Iowa State University

Explore further: Cougars' diverse diet helped them survive the Pleistocene mass extinction

add to favorites email to friend print save as pdf

Related Stories

Cloaked DNA nanodevices survive pilot mission

21 hours ago

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Revealing camouflaged bacteria

Apr 16, 2014

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Recommended for you

Not just the poor live hand-to-mouth

13 hours ago

When the economy hits the skids, government stimulus checks to the poor sometimes follow. Stimulus programs—such as those in 2001, 2008 and 2009—are designed to boost the economy quickly by getting cash ...

Math modeling handbook now available

16 hours ago

Math comes in handy for answering questions about a variety of topics, from calculating the cost-effectiveness of fuel sources and determining the best regions to build high-speed rail to predicting the spread ...

Archaeologists, tribe clash over Native remains

17 hours ago

Archaeologists and Native Americans are clashing over Indian remains and artifacts that were excavated during a construction project in the San Francisco Bay Area, but then reburied at an undisclosed location.

Male-biased tweeting

19 hours ago

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

User comments : 0

More news stories

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

Not just the poor live hand-to-mouth

When the economy hits the skids, government stimulus checks to the poor sometimes follow. Stimulus programs—such as those in 2001, 2008 and 2009—are designed to boost the economy quickly by getting cash ...

Archaeologists, tribe clash over Native remains

Archaeologists and Native Americans are clashing over Indian remains and artifacts that were excavated during a construction project in the San Francisco Bay Area, but then reburied at an undisclosed location.

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.