Water: the Solvent of Choice

May 16, 2005

Miscibility not required: chemical reactions "on water" faster than in organic solvents

We all know what it means to put something "on ice", but what is a chemical reaction "on water"? This new expression has been coined by a team headed by K. Barry Sharpless, winner of the 2001 Nobel Prize for chemistry, to describe reactions of organic substances that are not water-soluble, yet react well or even considerably faster in the presence of water than in organic solvents. If water could also replace organic solvents more often on the industrial scale, it would save money, increase the safety of chemical facilities, and reduce stress on the environment. Another advantage is that after the reaction, the organic and aqueous phases separate, eliminating the need for complex isolation steps to obtain the product.

Until now, a central aspect in the area of aqueous organic chemistry has been the effort to improve the water- solubility of the substances involved. Has this been the wrong approach? Is the axiom that has been passed on from the days of alchemy, corpora non agunt nisi soluta (substances do not interact with each other if they are not dissolved), no longer valid? Do reactants not need to be water-soluble at all in order to react in an aqueous environment? It seems that the situation bears some rethinking. Says Sharpless, "In contrast to prior assumptions, it seems that in many cases the immiscibility of the organic and aqueous phases is a considerable advantage."

So what exactly does "on water" mean? The expression simply refers to the fact that the reactants and the water are vigorously stirred together. This forms a suspension, meaning that the immiscible liquids are finely divided into tiny drops. The contact surface between the aqueous and organic phases is thus especially large.

Why certain important categories of reactions, such as the Claisen rearrangement, work so well in aqueous suspension is not yet clear. Particularly astonishing is the fact that the reactions occasionally go faster "on water" than in a mixture of the pure reactants (without any solvent). "Molecules at the interface between two different phases often behave differently than molecules within the phase." Sharpless speculates: "It is possible that the unique properties of molecules at the interface between the water and the hydrophobic, oily organic phase play an important role in speeding up the reactions."

Source: John Wiley & Sons, Inc.

Explore further: College education not always about what you have

add to favorites email to friend print save as pdf

Related Stories

The fix is in: Team studies self-healing polymers

Aug 07, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger ...

SHERLOC to micro-map Mars minerals and carbon rings

Aug 01, 2014

(Phys.org) —An ultraviolet-light instrument on the robotic arm of NASA's Mars 2020 rover will use two types of ultraviolet-light spectroscopy, plus a versatile camera, to help meet the mission's ambitious ...

Water molecules favor negative charges

Jul 16, 2014

(Phys.org) —In the presence of charged substances, H2O molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. EPFL researchers have published ...

'Work environment' affects protein properties

Jul 03, 2014

The function of proteins, which fulfil various tasks inside the cells, is often analysed in aqueous buffer solutions. However, it is not known, for example in case of pharmaceutical studies, if they work ...

A breakthrough for organic reactions in water

Jun 26, 2014

Green-chemistry researchers at McGill University have discovered a way to use water as a solvent in one of the reactions most widely used to synthesize chemical products and pharmaceuticals.

Recommended for you

The tyranny of realism in energy planning

4 minutes ago

A report exploring the political economy of energy planning under democracy and the Integrated Energy Planning (IEP) process due to conclude this year was launched by the British High Commission, Project ...

What I learned from debating science with trolls

2 hours ago

I often like to discuss science online and I'm also rather partial to topics that promote lively discussion, such as climate change, crime statistics and (perhaps surprisingly) the big bang. This inevitably ...

User comments : 0