Scientists watch black hole born in split-second light flash

May 11, 2005

After 30 years, they finally caught one. Scientists on Monday have for the first time detected and pinned down the location of a so-called "short" gamma-ray burst, lasting only 50 milliseconds.
The burst marks the birth of a black hole. The astronomy community is buzzing with speculation on what could have caused the burst, perhaps a collision of two older black holes or two neutron stars. A multitude of follow-up observations are planned; the answer might come in a few more days. "Everything about this gamma-ray burst so far supports the merger theory," said Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State and a gamma-ray-burst theorist.

Gamma-ray bursts are the most powerful explosions known in the universe. Recently, the longer ones -- lasting more than two seconds -- have become easy prey for NASA satellites such as Swift, built to detect and quickly locate the flashes. Short bursts had remained elusive until Monday, when Swift detected one, autonomously locked onto a location and focused its onboard telescopes in less than a minute to capture the burst afterglow.

"Seeing the afterglow from a 'short' gamma-ray burst was a major goal for Swift, and we hit it just a few months after launch," said Neil Gehrels, Swift project scientist at NASA Goddard Space Flight Center in Greenbelt, Md. "Now, for the first time, we have real data to figure out what these things are."

Like clues left at a crime scene, the afterglow contains information about what caused the burst. Most scientists are convinced short and long bursts arise from two different catastrophic origins. The longer bursts appear to be from massive star explosions in very distant galaxies. The shorter ones -- less than two seconds and often just a few milliseconds -- are the deeper mystery because they have been simply too fast to observe in detail.

The Monday burst is called GRB 050509B. Swift's X-ray Telescope detected a weak afterglow that faded away after about five minutes. Swift's Ultraviolet/Optical Telescope did not see an afterglow. Ground-based telescopes have not yet definitely detected an afterglow either. In contrast, afterglows from long bursts linger from days to weeks.

All of this fits the pattern of a collision between some combination of black holes or neutron stars, both of which are created in the death of massive stars. Neutron stars are dense spheres about 20 miles across. Black holes have no surface and are regions in space of infinite density. Theory predicts that these kinds of collisions wouldn't produce a long afterglow because there isn't much "fuel," such as dust and gas, from the objects and in the region to sustain an afterglow.

GRB 050509B appears to have occurred near an unusual galaxy that has old stars and is relatively nearby, about 2.7 billion light years away, which also is consistent with the theory that short bursts come from older, evolved neutron stars and black holes. In contrast, longer gamma-ray bursts tend to be in young, distant galaxies filled with young, massive stars -- remnants of the early universe.

"We are combing the region around the burst with the Keck Telescope for clues about this burst or its host galaxy," said Shri Kulkarni, a gamma-ray burst expert at Caltech. "What we are seeing so far is what proponents of the merger theory have been saying all along. Such an evanescent afterglow has been expected in the most popular model for short hard bursts to date." Additional observations are planned for NASA's Hubble Space Telescope and Chandra X-ray Observatory.

For more information about this and other Swift-detected bursts, refer to grb.sonoma.edu

Source: Penn State

Explore further: NASA spacecraft nears historic dwarf planet arrival

add to favorites email to friend print save as pdf

Related Stories

Where do stars form in merging galaxies?

14 hours ago

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

What is a Wolf-Rayet star?

Feb 06, 2015

Wolf-Rayet stars represent a final burst of activity before a huge star begins to die. These stars, which are at least 20 times more massive than the Sun, "live fast and die hard", according to NASA.

Black hole chokes on a swallowed star

Jan 26, 2015

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

Novel vision of the death of massive stars

Jan 08, 2015

An international consortium, in which the University of the Basque Country (UPV/EHU), Ikerbasque and CSIC are participating, has published in a single article a compendium of data obtained after the simultaneous ...

Hubble spies charming spiral galaxy bursting with stars

Dec 09, 2014

(Phys.org) —The NASA/ESA Hubble Space Telescope observes some of the most beautiful galaxies in our skies—spirals sparkling with bright stellar nurseries, violent duos ripping gas and stars away from ...

Recommended for you

Far from home: Wayward cluster is both tiny and distant

5 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

Why don't we search for different life?

9 hours ago

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don't we look for the stuff that's really different?

OSIRIS catches glimpse of Rosetta's shadow

10 hours ago

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. ...

Kamikaze comet loses its head

11 hours ago

Like coins, most comet have both heads and tails. Occasionally, during a close passage of the Sun, a comet's head will be greatly diminished yet still retain a classic cometary outline. Rarely are we left ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.