Scientists watch black hole born in split-second light flash

May 11, 2005

After 30 years, they finally caught one. Scientists on Monday have for the first time detected and pinned down the location of a so-called "short" gamma-ray burst, lasting only 50 milliseconds.
The burst marks the birth of a black hole. The astronomy community is buzzing with speculation on what could have caused the burst, perhaps a collision of two older black holes or two neutron stars. A multitude of follow-up observations are planned; the answer might come in a few more days. "Everything about this gamma-ray burst so far supports the merger theory," said Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State and a gamma-ray-burst theorist.

Gamma-ray bursts are the most powerful explosions known in the universe. Recently, the longer ones -- lasting more than two seconds -- have become easy prey for NASA satellites such as Swift, built to detect and quickly locate the flashes. Short bursts had remained elusive until Monday, when Swift detected one, autonomously locked onto a location and focused its onboard telescopes in less than a minute to capture the burst afterglow.

"Seeing the afterglow from a 'short' gamma-ray burst was a major goal for Swift, and we hit it just a few months after launch," said Neil Gehrels, Swift project scientist at NASA Goddard Space Flight Center in Greenbelt, Md. "Now, for the first time, we have real data to figure out what these things are."

Like clues left at a crime scene, the afterglow contains information about what caused the burst. Most scientists are convinced short and long bursts arise from two different catastrophic origins. The longer bursts appear to be from massive star explosions in very distant galaxies. The shorter ones -- less than two seconds and often just a few milliseconds -- are the deeper mystery because they have been simply too fast to observe in detail.

The Monday burst is called GRB 050509B. Swift's X-ray Telescope detected a weak afterglow that faded away after about five minutes. Swift's Ultraviolet/Optical Telescope did not see an afterglow. Ground-based telescopes have not yet definitely detected an afterglow either. In contrast, afterglows from long bursts linger from days to weeks.

All of this fits the pattern of a collision between some combination of black holes or neutron stars, both of which are created in the death of massive stars. Neutron stars are dense spheres about 20 miles across. Black holes have no surface and are regions in space of infinite density. Theory predicts that these kinds of collisions wouldn't produce a long afterglow because there isn't much "fuel," such as dust and gas, from the objects and in the region to sustain an afterglow.

GRB 050509B appears to have occurred near an unusual galaxy that has old stars and is relatively nearby, about 2.7 billion light years away, which also is consistent with the theory that short bursts come from older, evolved neutron stars and black holes. In contrast, longer gamma-ray bursts tend to be in young, distant galaxies filled with young, massive stars -- remnants of the early universe.

"We are combing the region around the burst with the Keck Telescope for clues about this burst or its host galaxy," said Shri Kulkarni, a gamma-ray burst expert at Caltech. "What we are seeing so far is what proponents of the merger theory have been saying all along. Such an evanescent afterglow has been expected in the most popular model for short hard bursts to date." Additional observations are planned for NASA's Hubble Space Telescope and Chandra X-ray Observatory.

For more information about this and other Swift-detected bursts, refer to grb.sonoma.edu

Source: Penn State

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Hubble spies charming spiral galaxy bursting with stars

Dec 09, 2014

(Phys.org) —The NASA/ESA Hubble Space Telescope observes some of the most beautiful galaxies in our skies—spirals sparkling with bright stellar nurseries, violent duos ripping gas and stars away from ...

FOXSI to observe X-rays from Sun

Dec 08, 2014

An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits. ...

Recommended for you

SDO captures images of two mid-level flares

16 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

23 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.