Global warming plus natural bacteria could release vast carbon deposits currently stored in Arctic soil

May 06, 2005

Increasing concentrations of carbon dioxide in the atmosphere will make global temperatures rise. By studying soil cores from the Arctic, scientists have discovered that this rise in temperature stimulates the growth of microorganisms that can break down long-term stores of carbon, releasing them into the atmosphere as carbon dioxide. This will lead to further increases in global temperatures.

Carbon is held in soil either in material that is easily degraded by chemical and bacterial action (labile soil carbon), or in material that is less easily degraded by microorganisms (resistant soil carbon). About one third of the world’s soil carbon is located in high latitudes such as the Arctic, and much of this effectively locked away in recalcitrant stores.

If this carbon were ever released into the atmosphere as carbon dioxide, the concentration of this ‘green-house gas’ would increase considerably, leading to a substantial increase in global warming.

The question that researchers in Austria, Russia and Finland asked was whether increasing global temperatures that are already predicted could enable micro organisms to use this carbon. Their results are published in this week’s edition of Rapid Communications in Mass Spectrometry.

The researchers incubated soil cores at 2oC, 12oC and 24oC. They found that resistant soil carbon was preferentially respired by arctic microbes at higher temperatures, presumably due to a shift in microbial populations.

They also found that the change in the relative proportion of different microorganisms in the soil was not driven by a depletion of more readily available carbon, but simply by the change in temperature.

“This temperature driven change in availability of resistant carbon is of crucial importance in the context of climate change,” says co-author Andreas Richter who works at the Institute of Ecology and Conservation Biology at the University of Vienna, Austria. “It may be that the whole idea of ‘resistant carbon compounds’ in arctic soils may only be relevant within a cool world and have no place in a future warmer world.”

Source: John Wiley & Sons

Explore further: Fermi finds a 'transformer' pulsar

add to favorites email to friend print save as pdf

Related Stories

Studying wetlands as a producer of greenhouse gases

20 hours ago

(Phys.org) —Wetlands are well known for their beneficial role in the environment. But UConn Honors student Emily McInerney '15 (CAHNR) is studying a less widely known role of wetlands – as a major producer ...

Kudzu can release soil carbon, accelerate global warming

Jul 01, 2014

Clemson University scientists are shedding new light on how invasion by exotic plant species affects the ability of soil to store greenhouse gases. The research could have far-reaching implications for how ...

Evolutionary origins of plant/bacteria symbiosis

Jul 16, 2014

The symbiosis between some plant species and nitrogen-fixing nodule bacteria is one of the most relevant cooperative relationships in the world. It shapes our global vegetation and, not least, the global ...

Recommended for you

Fermi finds a 'transformer' pulsar

11 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

New launch date set for ISS delivery vessel

12 hours ago

A robot ship will be launched from Kourou, French Guiana, after a five-day delay on July 29 to deliver provisions to the International Space Station, space transport firm Arianespace said Tuesday.

The heart of an astronaut, five years on

14 hours ago

The heart of an astronaut is a much-studied thing. Scientists have analyzed its blood flow, rhythms, atrophy and, through journal studies, even matters of the heart. But for the first time, researchers are ...

User comments : 0