Researchers Use Synchrotron to Shed Light on Cadmium's Role in Carbon Cycle

May 06, 2005

An international team that includes two University of Saskatchewan Canada Research Chairs has discovered that the element cadmium, well known for its toxicity to humans and other animals, may play an essential role in regulating atmospheric carbon.
The findings will be published in the May 5, 2005 issue of the prestigious science journal Nature.

The team includes U of S geological sciences professors Graham George and Ingrid Pickering and colleagues from Woods Hole Oceanographic Institute in Massachusetts, Sandia Laboratories in California, ExxonMobil Research and Engineering, and Princeton University in New Jersey.

Working at the Stanford Synchrotron Radiation Laboratory in California, George and Pickering used synchrotron X-rays to partly determine the shape of an enzyme that regulates levels of carbon dioxide in single-celled plants called diatoms. Colleagues on the team isolated the genes responsible for the cadmium enzyme, which also appear to be unique.

George and Pickering confirmed that the plant enzyme, cadmium carbonic anhydrase, does indeed use cadmium – the first known biological use of the element.

“Our research establishes a role for cadmium for the first time. No one has done this before,” George says.

The team found that the cadmium enzyme performs much the same role as zinc-based enzymes in land plants. The U of S researchers compared the two types of enzymes using data generated at the Stanford synchrotron.

“It turns out that cadmium may play a vital role in the global carbon cycle,” George says. “The enzyme is used by diatoms in the first step of photosynthesis, which is responsible for uptake of carbon dioxide from the atmosphere.”

Like all plants, diatoms use photosynthesis to take in carbon dioxide and release oxygen. Since they are present in all the world’s oceans, which cover about 70 per cent of the Earth’s surface, diatoms have a huge collective impact.

The researchers speculate that the diatoms’ capacity to use cadmium developed because ocean waters contain only trace amounts of certain essential metals. In fact, the diatoms prefer to produce a zinc-based enzyme rather than the cadmium version. But the ability to make a cadmium enzyme allows the microscopic plants to better survive in their environment because surface seawater contains almost no zinc.

Until now, cadmium was thought to be something solely to be avoided. While our bodies can get rid of the metal, excessive amounts can damage the kidneys, bones, nervous and cardiovascular systems.

Cadmium has many industrial uses such as nickel-cadmium rechargeable batteries, paint pigments, plating, alloys, and plastics. It is a naturally occurring element and can accumulate in crops, prompting efforts, for example, to develop low-cadmium varieties of durum wheat for Saskatchewan soils.

“What’s interesting here is the changing face of cadmium from a bad guy to a good guy,” George says.

Source: University of Saskatchewan

Explore further: Performance measures for CEOs vary greatly, study finds

add to favorites email to friend print save as pdf

Related Stories

Shallow Origins

Dec 22, 2009

In finding answers to the mystery of the origin of life, scientists may not have to dig too deep. New research is shedding light on shallower waters as a possible location for where life on Earth began.

Recommended for you

Creative activities outside work can improve job performance

32 minutes ago

Employees who pursue creative activities outside of work may find that these activities boost their performance on the job, according to a new study by San Francisco State University organizational psychologist Kevin Eschleman ...

Performance measures for CEOs vary greatly, study finds

7 hours ago

As companies file their annual proxy statements with the U.S. Securities and Exchange Commission (SEC) this spring, a new study by Rice University and Cornell University shows just how S&P 500 companies have ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.