Mystery Of Nanoparticles Concealed In The Blink Of An Eye

Jul 15, 2004

Scientists at the University of Chicago have discovered a better way to measure a confounding property of microscopic high-tech particles called quantum dots. Quantum dots, also called nanocrystals, emit light in a rainbow of colors and are used in lasers, biological studies and other applications, but their tendency to blink hinders their technological value. Imagine the annoyance caused by a randomly flickering light bulb.

“A quantum dot might blink for just a millionth of a second or it might blink for 15 minutes,” said Matthew Pelton, a Research Associate at the University of Chicago’s James Franck Institute. “This is one of the problems we have to solve if we want to engineer the properties of materials, particularly semiconductor materials, on the nanoscale.” Pelton has found a way to measure the blinking that is simpler and faster than the conventional method. He will describe the measurements in the Aug. 2 issue of Applied Physics Letters with co-authors David Grier, now of New York University, and Philippe Guyot-Sionnest of the University of Chicago. Grier compares the light output or “noise” of a blinking group of quantum dots to the babble of a cocktail party conversation. “Even if everyone’s talking about the same thing you probably wouldn’t be able to figure out what they’re saying because they’re all starting their conversations at random times and there are different variations on their conversations,” he said. “Matt has discovered that for these blinking quantum dots, all the conversations are the same in a very special way, and that allows you to figure out an awful lot about what’s being said by listening to the whole crowd.” In previous studies, various research groups combined powerful microscopes with video cameras to record the blinking behavior of one quantum dot at a time, but that method is expensive, time-consuming and difficult to perform. It also required that the dots be placed on a microscope slide. Pelton’s method enables scientists to study the blinking patterns of large quantities of dots. And it can be done in just a few minutes with standard laboratory equipment under a variety of environmental conditions. “Matt’s approach is applicable to situations where previous measurements could not be made,” Guyot-Sionnest said. The four components of Pelton’s system are a light source, a photodetector (a device that measures the intensity of light), an amplifier to boost the photodetector’s output, and an analogue-to-digital converter that translates the amplified output into a string of numbers for digital processing. The system has already revealed new insights into the behavior of quantum dots. Pelton’s results contradict the conventional wisdom about the blinking dots, which states that environmental factors influence the behavior. Pelton made his finding by applying a mathematical tool commonly used by electrical engineers to the problem of blinking quantum dots. “The mathematical tool is almost 200 years old. No one had thought to apply it to this problem before,” Grier said. Studying quantum dots one at a time with microscopes and video cameras was limited by the capabilities of the camera. For example, a camera that takes 40 frames a second would miss any blinks that occur more rapidly. But Pelton’s system includes a tool called a power spectrum to trace blinking behavior. This tool has established numerical recipes for handling the time resolution problem. The research team cannot say how long it might take to crack the mystery of the blinking quantum dots. What is certain is that quantum dots will continue to generate interest in high-tech circles. “Many scientists are trying to start up companies to make nanocrystals and to find a new use for them,” Guyot-Sionnest said. Quantum dot research at the University of Chicago is supported by the Materials Science and Engineering Research Center, the National Science Foundation and the American Chemical Society.
Source: The University of Chicago

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

add to favorites email to friend print save as pdf

Related Stories

Bright future for protein nanoprobes

Mar 18, 2014

( —The term a "brighter future" might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of ...

Video of virus-sized particle trying to enter cell

Feb 25, 2014

Tiny and swift, viruses are hard to capture on video. Now researchers at Princeton University have achieved an unprecedented look at a virus-like particle as it tries to break into and infect a cell. The technique they developed ...

Researchers unravel the mystery of quantum dot blinking

Nov 09, 2011

( -- Research by Los Alamos scientists published today in the journal Nature documents significant progress in understanding the phenomenon of quantum-dot blinking. Their findings should enhanc ...

Scientists Solve Problem of Quantum Dot 'Blinking'

Jan 23, 2008

Quantum dots—tiny, intense, tunable sources of colorful light—are illuminating new opportunities in biomedical research, cryptography and other fields. But these semiconductor nanocrystals also have a ...

Argonne researcher studies what makes quantum dots blink

Oct 02, 2007

In order to learn more about the origins of quantum dot blinking, researchers from the U.S. Department of Energy's Argonne National Laboratory, the University of Chicago and the California Institute of Technology ...

Small size enhances charge transfer in quantum dots

Dec 18, 2013

( —Quantum dots—tiny semiconductor crystals with diameters measured in billionths of a meter—have enormous potential for applications that make use of their ability to absorb or emit light ...

Recommended for you

Physicists create new nanoparticle for cancer therapy

11 hours ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.