Physicist dates lifetime of solar nebula at two million years

Apr 20, 2005
Physicist dates lifetime of solar nebula at two million years

The oxygen and magnesium content of some of the oldest objects in the universe are giving clues to the lifetime of the solar nebula, the mass of dust and gas that eventually led to the formation of our solar system.
By looking at the content of chondrules and calcium aluminum-rich inclusions (CAIs), both components of the primitive meteorite Allende, Lab physicist Ian Hutcheon, with colleagues from the University of Hawaii at Manoa, the Tokyo Institute of Technology and the Smithsonian Institution, found that the age difference between the two fragments points directly to the lifetime of the solar nebula.

Image: Researchers analyzed the calcium aluminum-rich inclusion (CAI), the larger circular object in the center of the photo, and the chondrule, the smaller circular object on the left, in a hand specimen of the Allende meteorite.

CAIs were formed in an oxygen-rich environment and date to 4.567 billion years old, while chondrules were formed in an oxygen setting much like that on Earth and date to 4.565 billion, or less, years old.

“Over this span of about two million years, the oxygen in the solar nebula changed substantially in its isotopic makeup,” Hutcheon said. “This is telling us that oxygen was evolving fairly rapidly.”

The research appears in the April 21 edition of the journal Nature.

One of the signatures of CAIs is an enrichment of the isotope Oxygen 16 (O-16). An isotope is a variation of an element that is heavier or lighter than the standard form of the element because each atom has more or fewer neutrons in its nucleus. The CAIs in this study are enriched with an amount of O-16 4 percent more than that found on Earth. And, while 4 percent may not sound like much, this O-16 enrichment is an indelible signature of the oldest solar system objects, like CAIs. CAIs and chondrules are tens of millions of years older than more modern objects in the solar system, such as planets, which formed about 4.5 billion years ago.

“By the time chondrules formed, the O-16 content changed to resemble what we have on Earth today,” Hutcheon said.

In the past, the estimated lifetime of the solar nebula ranged from less than a million years to ten million years. However, through analysis of the mineral composition and oxygen and magnesium isotope content of CAIs and chondrules, the team was able to refine that lifespan to roughly two million years.

“In the past the age difference between CAIs and chondrules was not well-defined,” Hutcheon said. “Refining the lifetime of the solar nebula is quite significant in terms of understanding how our solar system formed.”

Source: Lawrence Livermore National Laboratory

Explore further: 'Comb on a chip' powers new atomic clock design

add to favorites email to friend print save as pdf

Related Stories

Two Solar System puzzles solved

Jul 25, 2012

Comets and asteroids preserve the building blocks of our Solar System and should help explain its origin. But there are unsolved puzzles. For example, how did icy comets obtain particles that formed at high ...

Scientists discover first new chlorophyll in 60 years

Aug 20, 2010

(PhysOrg.com) -- University of Sydney scientists have stumbled upon the first new chlorophyll to be discovered in over 60 years and have published their findings in the international journal Science.

Recommended for you

'Comb on a chip' powers new atomic clock design

12 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

12 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

12 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

14 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0