Rising carbon dioxide levels increase risks to satellites

Apr 19, 2005

Climate change is widely attributed to the build-up of greenhouse gases, such as carbon dioxide, in the Earth’s atmosphere. However, scientists from the School of Engineering Sciences at the University of Southampton have shown that the impact of carbon dioxide is being felt in space too.

Dr Hugh Lewis from the School will present a paper to the Fourth European Conference on Space Debris at the European Space Operations Centre (ESOC) in Germany this week indicating that increasing levels of CO2 are causing the amount of space debris orbiting the Earth to increase faster than previously thought.

Whilst CO2 is causing a global rise in temperature at the Earth’s surface, it has the opposite effect in the upper part of the atmosphere known as the thermosphere. Here, in a region of space that contains the International Space Station and many other satellites, the temperature and the atmospheric density are falling rapidly.

Evidence from the Naval Research Laboratory in the USA suggests that the atmospheric density at these heights could be halved in the next 100 years. At first glance, this is good news for satellite operators: it will take longer for their satellites to re-enter the atmosphere. However, the research conducted at the University of Southampton in collaboration with QinetiQ shows that in the later half of this century satellites would be at greater risk from collisions with orbiting debris.

Collisions between objects orbiting the Earth can release as much energy as ten sticks of dynamite because of the enormous speeds involved, around ten kilometres per second. These events can subsequently produce hundreds of thousands of objects larger than 1 cm – each one a collision risk to satellites and used rocket stages.

According to the research team’s initial predictions a process known as ‘collision cascading’ – where the number of collisions in orbit increases exponentially – could occur much more quickly in the region of space between 200 km and 2,000 km above the Earth in response to rising CO2 levels. Simulations of a ‘business as usual’ scenario, where satellites are launched and destroyed at the rate they are now, show a 17 per cent increase in the number of collisions and a 30 per cent increase in the number of objects larger than 1 cm by the end of the 21st century.

Dr Lewis stresses that steps are already being taken to diminish the threat posed by orbiting debris. The Inter-Agency Space Debris Coordination Committee (IADC), an international governmental forum that coordinates activities related to the issues of debris in space, has produced a set of guidelines that identify mitigation options. Whilst Dr Lewis’ research has implications for these guidelines, he believes that they will remain effective measures: ‘We are only now beginning to understand the impact that polluting the atmosphere is having on space, but our knowledge of the problems posed by space debris is reliable,’ he commented.

The research was undertaken by Dr Lewis, with Dr Graham Swinerd and Charlotte Ellis of the School of Engineering Sciences, and Dr Clare Martin of QinetiQ.

Source: University of Southampton

Explore further: Innovative use of pressurant extends MESSENGER's mission, enables collection of new data

add to favorites email to friend print save as pdf

Related Stories

Satellite shows return of the Pineapple Express

Dec 12, 2014

The ''Pineapple Express'' happens when warm air and lots of moisture are transported from the Central Pacific, near Hawaii, to the Eastern Pacific Ocean. An animation of satellite imagery from NOAA's GOES-West ...

Steering ESA satellites clear of space debris

Oct 30, 2014

Improved collision warnings for its Earth observation missions means ESA controllers can now take more efficient evasive action when satellites are threatened by space junk.

Recommended for you

The top 101 astronomical events to watch for in 2015

Dec 24, 2014

Now in its seventh year of compilation and the second year running on Universe Today, we're proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your ...

NASA image: Frosty slopes on Mars

Dec 24, 2014

This image of an area on the surface of Mars, approximately 1.5 by 3 kilometers in size, shows frosted gullies on a south-facing slope within a crater.

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.