Liverpool scientist discovers new layer of the Earth

Apr 14, 2005

A University of Liverpool scientist has discovered a new layer near the Earth's core, which will enable the internal temperature of the Earth's mantle to be measured at a much deeper level than previously possible.

Dr Christine Thomas, from the Department of Earth Sciences, has found a previously undetected seismic layer near the Earth's core-mantle boundary. Her discovery will allow geophysicists to measure variations in the Earth's internal temperature near the boundary between the rocky mantle and fluid core, about 2,900 km below the Earth's surface.

Dr Thomas developed a model with colleagues at University of California Los Angeles (UCLA), which uses a recently discovered phase change (when atoms are compressed into crystals under high pressure) in the lowest part of the Earth's mantle. They propose that temperature changes in this area can result in the creation of two seismic layers near the core-mantle boundary, the second of which has been recently discovered by Dr Thomas.

The two seismic layers can provide a sensitive thermometer with which researchers can take the temperature of the Earth's lowermost mantle. The layers also enable scientists to examine whether cold subducted lithosphere (cold areas beneath a plate which can cause earthquakes) is reaching the core-mantle boundary, and whether hot material rises from the area between the core and mantle.

In the first case, the two seismic layers should be visible in seismic waves that travel through the Earth; the latter case would not show any layers. This would be a strong case for the convection of the whole mantle that is still a highly debated issue in the Earth Sciences.

Dr Thomas said: "Our discovery marks an exciting stage in earth science research as it provides the possibility to test the debated issue of whole mantle convection, the largely unconstrained heat flow from the Earth's core to the mantle and the fate of subducted lithosphere with seismic data."

Source: University of Liverpool

Explore further: Eclipsing binary stars discovered by high school students

add to favorites email to friend print save as pdf

Related Stories

New view of Rainier's volcanic plumbing

Jul 17, 2014

By measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier's deep volcanic plumbing and partly molten rock ...

Our planet's most abundant mineral now has a name

Jun 18, 2014

Deep below the earth's surface lies a thick, rocky layer called the mantle, which makes up the majority of our planet's volume. For decades, scientists have known that most of the lower mantle is a silicate ...

New evidence for oceans of water deep in the Earth

Jun 12, 2014

Researchers from Northwestern University and the University of New Mexico report evidence for potentially oceans worth of water deep beneath the United States. Though not in the familiar liquid form—the ...

New insight into the temperature of deep Earth

May 22, 2014

Scientists from the Magma and Volcanoes Laboratory (CNRS) and the European Synchrotron, the ESRF, have recreated the extreme conditions 600 to 2900 km below the Earth's surface to investigate the melting ...

Recommended for you

Mars, Saturn and the claws of Scorpius

3 hours ago

Look up at the night sky this week and you'll find Mars and Saturn together in the west. Mars stands out with its reddish colouring and you might just be able to detect a faint yellow tinge to Saturn. ...

Electric sparks may alter evolution of lunar soil

6 hours ago

The moon appears to be a tranquil place, but modeling done by University of New Hampshire and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly ...

User comments : 0