Materials on the nanoscale not necessarily different from macro-world counterparts

Jul 13, 2004

Researchers at the Georgia Institute of Technology and NASA suggest that materials on the nanoscale may sometimes be subject to the same physical rules as their macro-world counterparts. The findings provide an exception to the conventional scientific notion that objects small enough to be measured in nanometers (one-billionth of a meter) behave according to different rules than larger objects.

A team led by Lawrence Bottomley in Georgia Tech’s School of Chemistry and Biochemistry and Jonathon Colton in the School of Mechanical Engineering found that the mechanical response of a multi-walled carbon nanospring was remarkably similar to the rules that govern the mechanical properties of springs on the macro scale. The results are published in the American Chemical Society journal Nano Letters, Volume 4, Number 6.

“Small may not necessarily be different when it comes to the mechanical properties of springs,” said Bottomley. The findings suggest there may be other nano materials that behave in ways similar to their macroscale counterparts.

The results were surprising because they ran counter to the common wisdom in the literature said Colton.

“You’ve got to study each case carefully, don’t just assume it’s different,” Bottomley added.

The team used an atomic force microscope to compress a multi-walled carbon nanospring attached to the cantilever probe tip. By simultaneously monitoring cantilever deflection, oscillation amplitude and resonance of the cantilever, the group found the nanospring compressed and buckled in the same ways a macroscale spring would.

In this one application we modeled the performance of a nanospring using the equations that are used to describe two macroscale springs in series. The agreement of data with the theory is remarkably good, said Bottomley.

In the future, the team plans further tests on multiwalled carbon nanosprings to correlate the number of walls, number of coils, and helical pitch with mechanical performance.

Other members of the research team included Mark Poggi, Jeffrey Boyles and Andrew McFarland from Georgia Tech; Cattien Nguyen from the ELORET Corporation and Ramsey Stevens and Peter Lillehei from NASA.

Source: www.gatech.edu/

Explore further: Graphene meets heat waves

add to favorites email to friend print save as pdf

Related Stories

Researchers Develop Nanoblade

Sep 25, 2007

Researchers at Rensselaer Polytechnic Institute have created a razor-like material that is truly on the “cutting edge” of nanotechnology. Called nanoblades, these first-of-their-kind magnesium nanomaterials ...

Protein 'nanosprings' most resilient found in nature

Jan 15, 2006

A component of many proteins has been found to constitute one of the most powerful and resilient molecular "springs" in nature, researchers have discovered. The engineers and biologists from Duke University ...

Recommended for you

Graphene meets heat waves

41 minutes ago

EPFL researchers have shed new light on the fundamental mechanisms of heat dissipation in graphene and other two-dimensional materials. They have shown that heat can propagate as a wave over very long distances. ...

When temperature goes quantum

4 hours ago

A UA-led collaboration of physicists and chemists has discovered that temperature behaves in strange and unexpected ways in graphene, a material that has scientists sizzling with excitement about its potential ...

Buckybomb shows potential power of nanoscale explosives

Mar 05, 2015

(Phys.org)—Scientists have simulated the explosion of a modified buckminsterfullerene molecule (C60), better known as a buckyball, and shown that the reaction produces a tremendous increase in temperatur ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.