Materials on the nanoscale not necessarily different from macro-world counterparts

Jul 13, 2004

Researchers at the Georgia Institute of Technology and NASA suggest that materials on the nanoscale may sometimes be subject to the same physical rules as their macro-world counterparts. The findings provide an exception to the conventional scientific notion that objects small enough to be measured in nanometers (one-billionth of a meter) behave according to different rules than larger objects.

A team led by Lawrence Bottomley in Georgia Tech’s School of Chemistry and Biochemistry and Jonathon Colton in the School of Mechanical Engineering found that the mechanical response of a multi-walled carbon nanospring was remarkably similar to the rules that govern the mechanical properties of springs on the macro scale. The results are published in the American Chemical Society journal Nano Letters, Volume 4, Number 6.

“Small may not necessarily be different when it comes to the mechanical properties of springs,” said Bottomley. The findings suggest there may be other nano materials that behave in ways similar to their macroscale counterparts.

The results were surprising because they ran counter to the common wisdom in the literature said Colton.

“You’ve got to study each case carefully, don’t just assume it’s different,” Bottomley added.

The team used an atomic force microscope to compress a multi-walled carbon nanospring attached to the cantilever probe tip. By simultaneously monitoring cantilever deflection, oscillation amplitude and resonance of the cantilever, the group found the nanospring compressed and buckled in the same ways a macroscale spring would.

In this one application we modeled the performance of a nanospring using the equations that are used to describe two macroscale springs in series. The agreement of data with the theory is remarkably good, said Bottomley.

In the future, the team plans further tests on multiwalled carbon nanosprings to correlate the number of walls, number of coils, and helical pitch with mechanical performance.

Other members of the research team included Mark Poggi, Jeffrey Boyles and Andrew McFarland from Georgia Tech; Cattien Nguyen from the ELORET Corporation and Ramsey Stevens and Peter Lillehei from NASA.

Source: www.gatech.edu/

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

Researchers Develop Nanoblade

Sep 25, 2007

Researchers at Rensselaer Polytechnic Institute have created a razor-like material that is truly on the “cutting edge” of nanotechnology. Called nanoblades, these first-of-their-kind magnesium nanomaterials ...

Protein 'nanosprings' most resilient found in nature

Jan 15, 2006

A component of many proteins has been found to constitute one of the most powerful and resilient molecular "springs" in nature, researchers have discovered. The engineers and biologists from Duke University ...

Recommended for you

Relaxing DNA strands by using nano-channels

14 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0