Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthes

Apr 12, 2004

Science publishes an article by Alan H. Windle and co-workers . Many routes have been developed for the synthesis of carbon nanotubes, but their assembly into continuous fibers has been achieved only through postprocessing methods.
In his article Mr. Windle says that they spun fibers and ribbons of carbon nanotubes directly from the chemical vapor deposition (CVD) synthesis zone of a furnace using a liquid source of carbon and an iron nanocatalyst. This process was realized through the appropriate choice of reactants, control of the reaction conditions, and continuous withdrawal of the product with a rotating spindle used in various geometries.
(Science, Vol 304, Issue 5668, 276-278, 9 April 2004)

Macroscopic assemblies of carbon nanotubes are desired for a wide range of applications, including composites, micromechanical actuators, power cables, electrodes, and catalyst supports. Considerable research has been directed toward producing assemblies of aligned nanotubes, with the object of obtaining good properties in one or more directions. To date, attention has focused on the postprocessing of dispersed nanotubes by drying to produce films, coupled with electric or magnetic fields. Similarly, fibers of nanotubes or nanotube-polymer blends have been drawn or spun from solutions or gels. It has also been demonstrated that a thread of nanotubes can be dry-drawn from an aligned assembly on a silicon substrate, underlining the ability of nanotubes to assemble as a result of van der Waal interactions. Recently, Zhu et al. have reported the formation of a 20-cm-long nanotube thread after the pyrolysis of hexane, ferrocene, and thiophene. Although this work shows the possibility of fiber formation directly in a furnace, the product was isolated strands.

By mechanically drawing the carbon nanotubes directly from the gaseous reaction zone, authors have found it possible to wind up continuous fiber without an apparent limit to the length. If this fiber can challenge conventional high-performance fibers for properties, its simpler method of production will commend it on both cost and environmental grounds. The key requirements for continuous spinning are the rapid production of high-purity nanotubes to form an aerogel in the furnace hot zone and the forcible removal of the product from reaction by continuous wind-up.

Explore further: Google eyes nanoparticle platform as part of health rethink

add to favorites email to friend print save as pdf

Related Stories

Carbon nanotube fibers outperform copper

Feb 14, 2014

(Phys.org) —On a pound-per-pound basis, carbon nanotube-based fibers invented at Rice University have greater capacity to carry electrical current than copper cables of the same mass, according to new research.

Recommended for you

DNA nanoswitches reveal how life's molecules connect

Jan 30, 2015

A complex interplay of molecular components governs almost all aspects of biological sciences - healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules ...

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.