'Born-again' stars reveal how the earth was created

Apr 07, 2005

Scientists at The University of Manchester have unveiled new research which shows how exploding stars may have helped to create the earth. The discovery was made during a unique research project examining how some dead stars re-ignite and come back to life.
Professor Albert Zijlstra's study of Sakurai's Object - the only star which has been observed re-igniting in modern times - has led him to conclude that 5% of the carbon on earth may have been come from stardust expelled by stars exploding back to life.

"Up to 0.1% of the total mass of the star, which is equivalent to 300 times the mass of the earth, can be expelled when a star re-ignites," says Professor Zijlstra.

"This discovery not only gives us a new understanding of where the natural material that made up the earth came from, but also leads us to believe that part of the carbon in the universe could have come from these events."

Stars die when they have used up most of their hydrogen. For the Sun, this will happen in about 4.5 billion years. But some stars will experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in their outer envelope is drawn into the helium shell. After the explosive re-ignition, the star will expand to giant proportions - expelling tonnes of carbon in the process - before rapidly burning out again.

"We expect that some 25% of all stars will experience such a re-ignition, but this is an extremely rare occurrence, and we will probably only see it happen once every hundred years or so", says Professor Zijlstra.

Incredibly, the earth's formation was not the main focus of Professor Zijlstra's research, which sought to establish a better understanding of why Sakurai's Object had re-ignited.

Computer simulations had predicted a series of events that would follow such a re-ignition, but the star didn't follow the script - events moved 100 times more quickly than the simulations predicted.

"Sakurai's Object went through the first phases of this sequence in just a few years - 100 times faster than we expected - so we had to revise our models. We've now produced a new theoretical model of how this process works, and the observations have provided the first evidence supporting our new model," Zijlstra said.

"It's important to understand this process. Sakurai's Object has ejected a large amount of carbon into space, both in the form of gas and dust grains. These will find their way into regions of space where new stars form, and the dust grains may become incorporated in new planets. Our results suggest this source for cosmic carbon may be far more important than previously suspected," Zijlstra added.

Zijlstra's findings will be presented in the April 8 issue of the prestigious journal Science.

Source: University of Manchester

Explore further: Planck helps to understand the macrostructure of the universe

Related Stories

Image: The colors of sunset over the ISS

1 hour ago

ESA astronaut Samantha Cristoforetti took these images from the International Space Station during her six-month mission. The Progress cargo ship and Soyuz crew spacecraft reflect sunlight as our star sets ...

Recreating the heart of a star on Earth

Mar 24, 2015

By recreating the extreme conditions similar to those found half-way into the Sun in a thin metal foil, Oxford University researchers have captured crucial information about how electrons and ions interact in a unique state ...

A new spin on Saturn's peculiar rotation

18 hours ago

Tracking the rotation speed of solid planets, like the Earth and Mars, is a relatively simple task: Just measure the time it takes for a surface feature to roll into view again. But giant gas planets Jupiter ...

Mission studies the Sun in soft X-rays

Mar 24, 2015

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can ...

Unusual asteroid suspected of spinning to explosion

Mar 20, 2015

A team led by astronomers from the Jagiellonian University in Krakow, Poland, recently used the W. M. Keck Observatory in Hawaii to observe and measure a rare class of "active asteroids" that spontaneously ...

Recommended for you

Image: The tumultuous heart of the Large Magellanic Cloud

19 hours ago

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

Total lunar eclipse before dawn on April 4th

19 hours ago

An unusually brief total eclipse of the Moon will be visible before dawn this Saturday, April 4th, from western North America. The eclipse happens on Saturday evening for Australia and East Asia.

Cassini: Return to Rhea

Mar 30, 2015

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.