Improved dielectric developed for chip-level copper circuitry

Mar 29, 2005

A new dielectric material, developed by researchers at the University of Illinois at Urbana-Champaign, could facilitate the use of copper circuitry at the chip level. The thermally stable aromatic polymer has a low dielectric constant of 1.85, good mechanical properties and excellent adhesion.

Replacing aluminum with copper as the multilayer interconnect structure in microelectronic devices could enhance both miniaturization and performance. Copper offers much higher electrical and thermal conductivity than aluminum. Placing narrow copper lines close together, however, requires a good dielectric to reduce cross talk between wires. Unfortunately, existing dielectric insulators can’t withstand the rigors of the aggressive chemical-mechanical polishing step used to produce a smooth copper surface.

“We developed an aromatic thermosetting polymer for use as an insulating material in copper chip technology,” said James Economy, a professor of materials science and engineering at Illinois. “The material has a high thermal stability, low moisture pick-up and can withstand chemical-mechanical polishing.”

The material that Economy and former graduate student Youngqing Huang (now at DuPont) started with had a dielectric constant of 2.7. By adding porogens – materials that leave tiny holes when they evaporate – the researchers lowered the dielectric constant to 1.85, while maintaining an acceptably high level of hardness and stiffness.

“The pores are closed and about 5 nanometers in size,” Economy said. “They are formed when heat is applied to low molecular weight porogens dispersed through the film. The porogens break down into small gas molecules that can diffuse through the polymer structure. The resulting microporosity does not significantly reduce the mechanical integrity of the foamed material.”

The new dielectric can withstand temperatures up to 400 degrees Celsius, is easily applied in solution phase to form a submicron thin film, and adheres to substrates better than other candidate materials.

“We feel we have identified the critical problems confronting the development of a dielectric material to facilitate the use of copper chip interconnections,” Economy said, “and we have solved every one of them.”

Huang will describe the new material at the spring meeting of the Materials Research Society, to be held in San Francisco, March 28 through April 1. The researchers have applied for a patent.

Source: University of Illinois at Urbana-Champaign

Explore further: Airbnb to expand tax collection efforts

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Airbnb to expand tax collection efforts

32 minutes ago

Online lodging operator Airbnb is expanding its efforts to collect local taxes, responding to complaints that it competes unfairly with the hotel sector.

Jay Z to acquire Wimp music service

1 hour ago

US rap star Jay Z will make a $56-million foray into the music streaming business by taking over the Norwegian service Wimp, its shareholders confirmed Friday.

Scientists trial system to improve safety at sea

2 hours ago

A space scientist at the University of Leicester, in collaboration with the New Zealand Defence Technology Agency and DMC International Imaging, has been trialling a concept for using satellite imagery to ...

How to harness the wind

3 hours ago

With the abundance of wind in the Great North, one might think that harnessing it would be a breeze. But that isn't the case. Fortunately, a Ryerson researcher has found a way to address the major challenges ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.