New microscopy advances biological imaging to nanoscale

Mar 28, 2005

Scanning probe microscopes, usually applied to imaging inorganic materials at nano- to microscopic scales, may soon be giving researchers new insights into the biomechanical structures and functions of living organisms—for example, nature's engineering of a butterfly's wing.

Sergei Kalinin, a Eugene P. Wigner Fellow at DOE's Oak Ridge National Laboratory, and Alexei Gruverman, a research professor at North Carolina State University, have obtained images of the structure of a Vanessa virginiensis (American Lady) butterfly's wing at approximately 10 nanometer resolution.

Their experiment demonstrates that emerging advances in scanning probe microscopy can be applied to more than hard inorganic materials such as superconductors and semiconductors. Although the images are “a proof of concept” it is a concept that could eventually provide clues to the functionality of complex hierarchical biological systems such as bones, teeth and other biological tissues.

Nevertheless, even the early results provide clues to the complex structure behind the elasticity and relative durability of the splendidly functional butterfly wing.

“Scanning probe microscopy provides unlimited opportunities for understanding material structure, properties, and functionality at all length scales,” says Kalinin . “This will pave the way to better and cheaper materials for biological and medical applications.”

Kalinin's and Gruverman's work with imaging biological systems has its roots in the development of atomic force microscopy in the 1980s. Now they are using a technique called Atomic Force Acoustic microscopy, AFAM, which uses tiny blasts of sound to probe not only the surface but also the subsurface structures of delicate biological materials, with approximately five nanometer resolution.

“This improved imaging sheds lights on how biological systems work, down to the five-nanometer resolutions, which is comparable to the size of a DNA molecule-about as small as you need for biological materials,” says Kalinin. “Biosystems, because they are not ordered like, for instance, crystalline materials, require real-space imaging of local elastic properties and structure. Scanning probe microscopes are a wonderful tool that is suited for exactly this purpose.”

“Scanning probe microscopy is a key to the advancement of nanoscience,” says Kalinin . “It is a new field and it develops rapidly, so novel methods appear virtually overnight. However, it takes a sustained interdisciplinary effort before true potential of SPM is realized.”

Source: Oak Ridge National Laboratory

Explore further: Scientists convert microbubbles to nanoparticles

Related Stories

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Radiochemistry Annex: It's getting hot in there

Dec 29, 2014

Scientist Daniel Kaplan has found it challenging to study radionuclides in contaminated wetlands due to the radioactive hazard and the biogeochemical complexity of the subsurface soils. Fortunately, he's ...

Recommended for you

Scientists convert microbubbles to nanoparticles

2 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

'Atomic chicken-wire' is key to faster DNA sequencing

5 hours ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

3-D images of tiny objects down to 25 nanometres

7 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.