NASA Tests Show Wing Warping Controls Aircraft at High Speeds

Mar 16, 2005

A NASA flight research project, designed to test a derivative of the Wright Brothers' concept of wing-warping to control aircraft turns, indicates the concept works, even at supersonic speeds.
This high-tech version of century-old technology may have an impact on aircraft design. It may make airplanes more maneuverable at high speeds, enable them to carry heavier payloads or use fuel more efficiently.

The Active Aeroelastic Wing (AAW) project is located at NASA's Dryden Flight Research Center, Edwards Air Force Base, Calif. The project is evaluating active control of lighter-weight flexible wings for improved maneuverability of high-performance aircraft. The project is jointly sponsored and managed by NASA, the U.S. Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio; and Boeing's Phantom Works, St. Louis.

"It works!" concluded project manager Larry Myers during AAW flight tests at Dryden. "We have demonstrated a number of subsonic and supersonic flight conditions, where we have actually taken advantage of the aeroelasticity of the wing," Myers explained. "We've gotten excellent results, good agreement with predicted results, and roll rates are comparable to what we predicted in simulation. It looks like we've proven the AAW concept," he added.

Active computerized control of wing flexibility is a step toward the "morphing" concept, where aircraft can change their shape to adapt to differing aerodynamic conditions. The AAW is primarily intended to benefit aircraft that operate in the transonic speed range. The range is approximately 80 to 120 percent of the speed of sound, where traditional control surfaces become minimally effective or ineffective.

Wing flexibility is generally a negative at those speeds. Wing flexibility tends to offset or counteract the effects of normal aileron movements at high aerodynamic pressures. The AAW concept reverses the traditional approach to this problem. The traditional approach has been stiffening the wings of high-performance aircraft with more structure and more weight. AAW reduces the structure and weight. It then actively controls the wing flexibility via computerized flight controls.

Data obtained from flight tests at Dryden will help guide the design of future aircraft including high-performance fighters, high altitude-long endurance uninhabited aerial vehicles, large transport aircraft and high-speed, long-range aircraft.

The test aircraft is an F/A-18A Hornet obtained from the U.S. Navy. It carries extensive instrumentation to measure the twisting and bending of the wing during flight. Once the flight research is successfully completed, the inventors will turn toward spreading the AAW design philosophy to the technical community.

"Transitioning AAW will likely be a relatively long process, since it represents a design philosophy," said Pete Flick, Air Force AAW program manager. "The application to future aircraft will depend on specific design requirements of those future systems. The benefits are greatest when a vehicle design is initiated with AAW in mind, and limited when applied to an existing vehicle," he added.

Source: NASA

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Fingers pointed as climate talks deadlock

12 hours ago

Accusations flew at deadlocked UN climate talks in Lima on Saturday, as the United States warned that failure to compromise could doom the 22-year-old global forum.

Recommended for you

SDO captures images of two mid-level flares

9 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

16 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

19 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

19 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.