NASA Tests Show Wing Warping Controls Aircraft at High Speeds

Mar 16, 2005

A NASA flight research project, designed to test a derivative of the Wright Brothers' concept of wing-warping to control aircraft turns, indicates the concept works, even at supersonic speeds.
This high-tech version of century-old technology may have an impact on aircraft design. It may make airplanes more maneuverable at high speeds, enable them to carry heavier payloads or use fuel more efficiently.

The Active Aeroelastic Wing (AAW) project is located at NASA's Dryden Flight Research Center, Edwards Air Force Base, Calif. The project is evaluating active control of lighter-weight flexible wings for improved maneuverability of high-performance aircraft. The project is jointly sponsored and managed by NASA, the U.S. Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio; and Boeing's Phantom Works, St. Louis.

"It works!" concluded project manager Larry Myers during AAW flight tests at Dryden. "We have demonstrated a number of subsonic and supersonic flight conditions, where we have actually taken advantage of the aeroelasticity of the wing," Myers explained. "We've gotten excellent results, good agreement with predicted results, and roll rates are comparable to what we predicted in simulation. It looks like we've proven the AAW concept," he added.

Active computerized control of wing flexibility is a step toward the "morphing" concept, where aircraft can change their shape to adapt to differing aerodynamic conditions. The AAW is primarily intended to benefit aircraft that operate in the transonic speed range. The range is approximately 80 to 120 percent of the speed of sound, where traditional control surfaces become minimally effective or ineffective.

Wing flexibility is generally a negative at those speeds. Wing flexibility tends to offset or counteract the effects of normal aileron movements at high aerodynamic pressures. The AAW concept reverses the traditional approach to this problem. The traditional approach has been stiffening the wings of high-performance aircraft with more structure and more weight. AAW reduces the structure and weight. It then actively controls the wing flexibility via computerized flight controls.

Data obtained from flight tests at Dryden will help guide the design of future aircraft including high-performance fighters, high altitude-long endurance uninhabited aerial vehicles, large transport aircraft and high-speed, long-range aircraft.

The test aircraft is an F/A-18A Hornet obtained from the U.S. Navy. It carries extensive instrumentation to measure the twisting and bending of the wing during flight. Once the flight research is successfully completed, the inventors will turn toward spreading the AAW design philosophy to the technical community.

"Transitioning AAW will likely be a relatively long process, since it represents a design philosophy," said Pete Flick, Air Force AAW program manager. "The application to future aircraft will depend on specific design requirements of those future systems. The benefits are greatest when a vehicle design is initiated with AAW in mind, and limited when applied to an existing vehicle," he added.

Source: NASA

Explore further: Commercial Dream Chaser closer to critical design review and first flight

add to favorites email to friend print save as pdf

Related Stories

UK: Former reporter sentenced for phone hacking

21 minutes ago

(AP)—A former British tabloid reporter was given a 10-month suspended prison sentence Thursday for his role in the long-running phone hacking scandal that shook Rupert Murdoch's media empire.

Video: The diversity of habitable zones and the planets

27 minutes ago

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

Recommended for you

Satellite galaxies put astronomers in a spin

20 minutes ago

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Discover the "X-factor" of NASA's Webb telescope

1 hour ago

NASA's James Webb Space Telescope and Chandra X-ray observatory have something in common: a huge test chamber used to simulate the hazards of space and the distant glow of starlight. Viewers can learn about ...

ATV-5 loaded and locked

1 hour ago

ESA's fifth Automated Transfer Vehicle is now scheduled for launch to the International Space Station at 23:44 GMT on 29 July (01:44 CEST 30 July) on an Ariane 5 rocket from Europe's Spaceport in Kourou, ...

MIPT-based researcher models Titan's atmosphere

1 hour ago

A researcher from Moscow Institute of Physics and Technology, Prof. Vladimir Krasnopolsky, who heads the Laboratory of High Resolution Infrared Spectroscopy of Planetary Atmospheres, has published the results of the comparison ...

The most precise measurement of an alien world's size

2 hours ago

Thanks to NASA's Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, ...

User comments : 0