UCLA scientists store materials in cells' natural vaults

Mar 08, 2005

Method may offer safer way to target drugs to living cells

In the realm of nanotechnology, or study of the tiny, scientists often aim to safely deliver and leave material in the human body without causing harm. A big challenge is how to design a package for this biomaterial that will be compatible with living cells and will not provoke an immune reaction. Previous efforts have relied upon viruses or artificial chemicals to house and deliver drugs or other substances to targeted cells.

Scientists at the David Geffen School of Medicine at UCLA have exploited thousands of tiny capsules in cells to store vast amounts of biomaterial. Dubbed vaults – for their high arches reminiscent of cathedral ceilings – these naturally occurring capsules may prove less likely to elicit an immune response than foreign carriers like viruses.

The UCLA discovery will enable many potential applications, including:

-- Therapeutic delivery, such as homing cancer drugs directly to a tumor cell without harming healthy tissue
-- Enzyme delivery to replace missing or defective enzymes, such as those that cause Tay Sachs disease
-- DNA delivery to correct genetic mutations
-- Timed release of drugs, enzymes and DNA
-- Extracting and imprisoning cellular toxins into the vault
-- Stabilizing proteins in vaults to increase their lifespans

Publication: The Proceedings of the National Academy of Sciences
www.pnas.org/cgi/content/abstract/0500929102v1

Source: University of California - Los Angeles

Explore further: Simple method of binding pollutants in water

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Designer's toolkit for dynamic DNA nanomachines

14 hours ago

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Chemists make new silicon-based nanomaterials

15 hours ago

Chemists from Brown University have found a way to make new 2-D, graphene-like semiconducting nanomaterials using an old standby of the semiconductor world: silicon.

Simple method of binding pollutants in water

19 hours ago

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Gold nanoparticles for targeted cancer treatment

19 hours ago

The use of tiny drug-loaded nanocarriers for the safe, targeted delivery of drugs to designated parts of the body has received much press in recent years. Human trials of nanocarriers targeting pancreatic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.