Scientist of the University of Ghent discovers natural atom antihydrogen

Mar 02, 2005

On February 15, 2005 of the Physics/Einstein Year, the complete story of the discovery of natural atom antihydrogen, started in 1985, was published on-line.
The antihydrogen problem has become a highly mediatic issue, both in the specialized physics and the more general press [1]. A real hype started at the end of 2002 when rivalling CERN-based groups ATHENA and ATRAP both claimed the production of large quantities of artificial antihydrogen. Scientists, wondering about a signature for the presence of this mysterious species antihydrogen, were disappointed as no direct signature whatever was presented. In fact, a spectral identification of antihydrogen is impossible since measuring its spectrum is exactly the goal of ATHENA and ATRAP collaborations.

Strangely, the same media failed to report that on October 21 2002, a paper was published with a signature for the antihydrogen atom in the observed line spectrum of natural H [2], an essential step in the discovery of natural antihydrogen by G. Van hooydonk, science professor at and former Chief-Librarian of the Ghent University. This signature would not make sense if it was not confirming an earlier signature in the band spectrum of natural molecular hydrogen [3]. Both types of complementary signatures for natural antihydrogen, as well as a Mexican hat-type potential [4], were left unnoticed since the time of Bohr.

The information published online is available in print in the 2005 March issue of the European Physical journal D [5]. With its sound theoretical basis, this discovery has drastic repercussions for physics at large and for atomic and molecular physics (chemistry) in particular. According to the referees, the story is fascinating to read. The existence of natural antihydrogen not only flaws the CERN-experiments on artificial antihydrogen [6]; it is also important for the three fundamental symmetries CPT in physics and for Einstein’s WEP. The existence of natural antihydrogen also immediately solves the long standing problem of the so-called matter-antimatter asymmetry of the Universe, where natural hydrogen is the most abundant species. As a matter of fact, in natural stable molecular hydrogen, the amounts of atom hydrogen and of its mirrored counterpart antihydrogen must be exactly the same for old-fashioned stochiometric reasons.

[1] C. Seife, Science 298, 1327 (2002); ibidem 307, 26 (2005)
[2] G. Van Hooydonk, Phys. Rev. A 66, 044103 (2002)
[3] G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000); physics/0003005 (2000)
[4] G. Van Hooydonk, Acta Phys. Hung. A NS 19, 385 (2004), lecture at the Wigner Centennial 2002, Pecs, Hungary; quantum.ttk.pte.hu/~wigner/pro… dings/papers/w73.pdf
[5] G. Van Hooydonk, Eur. Phys. J D 32, 299 (2005)
[6] G. Van Hooydonk, physics/0505074 (2005)

Explore further: New approach to form non-equilibrium structures

add to favorites email to friend print save as pdf

Related Stories

New material puts a twist in light

48 minutes ago

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

Controversial Alaska mine project wins one in Congress

1 hour ago

Supporters of the embattled Pebble Mine project in Alaska are making a desperate effort in Congress and the courts to keep it alive in the face of warnings from the Environmental Protection Agency that it could devastate ...

Recommended for you

New approach to form non-equilibrium structures

16 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

17 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

21 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

22 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

22 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

User comments : 0