NASA's Spitzer Space Telescope Exposes Dusty Galactic Hideouts

Mar 01, 2005
 Dusty Galactic Hideouts

How do you hide something as big and bright as a galaxy? You smother it in cosmic dust. NASA's Spitzer Space Telescope saw through such dust to uncover a hidden population of monstrously bright galaxies approximately 11 billion light-years away.

These strange galaxies are among the most luminous in the universe, shining with the equivalent light of 10 trillion suns. But, they are so far away and so drenched in dust, it took Spitzer's highly sensitive infrared eyes to find them.

"We are seeing galaxies that are essentially invisible," said Dr. Dan Weedman of Cornell University, Ithaca, N.Y., co-author of the study detailing the discovery, published in today's issue of the Astrophysical Journal Letters. "Past infrared missions hinted at the presence of similarly dusty galaxies over 20 years ago, but those galaxies were closer. We had to wait for Spitzer to peer far enough into the distant universe to find these."

Where is all this dust coming from? The answer is not quite clear. Dust is churned out by stars, but it is not known how the dust wound up sprinkled all around the galaxies. Another mystery is the exceptional brightness of the galaxies. Astronomers speculate that a new breed of unusually dusty quasars, the most luminous objects in the universe, may be lurking inside. Quasars are like giant light bulbs at the centers of galaxies, powered by huge black holes.

Astronomers would also like to determine whether dusty, bright galaxies like these eventually evolved into fainter, less murky ones like our own Milky Way. "It's possible stars like our Sun grew up in dustier, brighter neighborhoods, but we really don't know. By studying these galaxies, we'll get a better idea of our own galaxy's history," said Cornell's Dr. James Houck, lead author of the study.

The Cornell-led team first scanned a portion of the night sky for signs of invisible galaxies using an instrument on Spitzer called the multiband imaging photometer. The team then compared the thousands of galaxies seen in this infrared data to the deepest available ground-based optical images of the same region, obtained by the National Optical Astronomy Observatory Deep Wide- Field Survey. This led to identification of 31 galaxies that can be seen only by Spitzer. "This large area took us many months to survey from the ground," said Dr. Buell Jannuzi, co-principal investigator for the Deep Wide-Field Survey, "so the dusty galaxies Spitzer found truly are needles in a cosmic haystack."

Further observations using Spitzer's infrared spectrograph revealed the presence of silicate dust in 17 of these 31 galaxies. Silicate dust grains are planetary building blocks like sand, only smaller. This is the furthest back in time that silicate dust has been detected around a galaxy. "Finding silicate dust at this very early epoch is important for understanding when planetary systems like our own arose in the evolution of galaxies," said Dr. Thomas Soifer, study co-author, director of the Spitzer Science Center, Pasadena, Calif., and professor of physics at the California Institute of Technology, also in Pasadena.

This silicate dust also helped astronomers determine how far away the galaxies are from Earth. "We can break apart the light from a distant galaxy using a spectrograph, but only if we see a recognizable signature from a mineral like silicate, can we figure out the distance to that galaxy," Soifer said.

In this case, the galaxies were dated back to a time when the universe was only three billion years old, less than one-quarter of its present age of 13.5 billion years. Galaxies similar to these in dustiness, but much closer to Earth, were first hinted at in 1983 via observations made by the joint NASA-European Infrared Astronomical Satellite. Later, the European Space Agency's Infrared Space Observatory faintly recorded comparable, nearby objects. It took Spitzer's improved sensitivity, 100 times greater than past missions, to finally seek out the dusty galaxies at great distances.

The National Optical Astronomy Observatory Deep Wide-Field Survey used the National Science Foundation's 4-meter (13-foot) telescope at Kitt Peak National Observatory, located southwest of Tucson, Ariz.

Source: NASA

Explore further: Suddenly, the sun is eerily quiet: Where did the sunspots go?

add to favorites email to friend print save as pdf

Related Stories

Organic conundrum in Large Magellanic Cloud

Jun 23, 2014

(Phys.org) —A group of organic chemicals that are considered carcinogens and pollutants today on Earth, but are also thought to be the building blocks for the origins of life, may hold clues to how carbon-rich ...

Black hole fireworks in nearby galaxy

Jul 03, 2014

(Phys.org) —Celebrants this Fourth of July will enjoy the dazzling lights and booming shock waves from the explosions of fireworks. A similarly styled event is taking place in the galaxy Messier 106, as ...

Shocks in the Cygnus Loop supernovae remnant

Jun 27, 2014

(Phys.org) —Supernova remnants (SNRs) play a vital role in the lifecycle of dust in the interstellar medium. As shockwaves from supernovae sweep up interstellar material, they heat the gas and dust, and ...

New suspect identified in supernova explosion

Jun 04, 2014

(Phys.org) —Supernovas are often thought of as the tremendous explosions that mark the ends of massive stars' lives. While this is true, not all supernovas occur in this fashion. A common supernova class, ...

Pitch black: Cosmic clumps cast the darkest shadows

May 22, 2014

(Phys.org) —Astronomers have found cosmic clumps so dark, dense and dusty that they throw the deepest shadows ever recorded. Infrared observations from NASA's Spitzer Space Telescope of these blackest-of-black ...

Recommended for you

Fermi finds a 'transformer' pulsar

9 hours ago

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

New launch date set for ISS delivery vessel

10 hours ago

A robot ship will be launched from Kourou, French Guiana, after a five-day delay on July 29 to deliver provisions to the International Space Station, space transport firm Arianespace said Tuesday.

The heart of an astronaut, five years on

11 hours ago

The heart of an astronaut is a much-studied thing. Scientists have analyzed its blood flow, rhythms, atrophy and, through journal studies, even matters of the heart. But for the first time, researchers are ...

User comments : 0