Molecular capsule: helical ribbon with closed ends takes up guest molecules

Feb 28, 2005

Tiny molecular "containers" that can take up other molecules as "guests" are of particular interest for technology and science, as catalysts, micro-reaction-chambers, transport containers for pharmaceutical agents, or protective covers for unstable molecules. Various strategies have now been established for building such miniature capsules. Ivan Huc and Joachim Garric (European Institute of Chemistry and Biology, Pessac), as well as Jean-Michel Léger (Laboratoire de Pharmacochimie, Bordeaux) have now developed a novel approach.

The French chemists synthesized a strand-like molecule from aromatic amine building blocks -- nitrogen-containing carbon rings. The building blocks are chosen so that the ribbon curls into a helix. The crucial trick is that the helix is not even: it has a significantly larger diameter in the middle than at the ends. The researchers can precisely control the inner diameter by the selection of individual building blocks and the precise arrangement of the nitrogen atoms within the ring system. They thus select correspondingly different building blocks for the middle and end sections of the spiral ribbon. This results in a helix with a real bubble in the middle and ends without a cavity, which close off the bubble. The capsule is thus complete.

"Our capsules are constructed so that they take up a single water molecule," says Huc. "They enclose it completely and shield it from surrounding organic solvents." And how does the water molecule get into the capsule? Nuclear magnetic resonance studies support the theory that the helices partially unravel at one end, let the water molecule slip in, and then close again."

The researchers now want to expand their highly promising concept. They are thus working on larger capsules that could take up larger or multiple molecules.

Explore further: Generating broadband terahertz radiation from a microplasma in air

Related Stories

Silicon Valley marks 50 years of Moore's Law

Apr 24, 2015

Computers were the size of refrigerators when an engineer named Gordon Moore laid the foundations of Silicon Valley with a vision that became known as "Moore's Law."

Rafts on the cell membrane

Apr 21, 2015

Tiny structures made of lipid molecules and proteins have been believed to wander within the membrane of a cell, much like rafts on the water. This "raft hypothesis" has been widely accepted, but now scientists ...

Recommended for you

Researchers build real-time tunable plasmon laser

Apr 24, 2015

(Phys.org)—A combined team of researchers from Northwestern and Duke Universities has succeeded in building a plasmon laser that is tunable in real-time. In their paper published in the journal Nature Co ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.