New NIST reference material reinforces fragile-x screens

Feb 25, 2005

A new Standard Reference Material from the National Institute of Standards and Technology (NIST) will help clinical genetics labs improve the accuracy of their diagnostic tests for the most common cause of hereditary mental retardation.

"Fragile X Syndrome" is a genetic mutation affecting approximately one in 3,600 males and one in 4,000 to 6,000 females. It has been linked to several physical abnormalities and to intellectual problems ranging from minor learning disabilities to severe mental retardation and autism. The mutation is characterized by an excessive number of repeats of a sequence of three nucleotides (the chemical building blocks of DNA) within a particular gene on the human X chromosome.

Proper diagnosis depends critically on accurate counts of the number of triplet repeats. Individuals with up to 44 repeats are normal; individuals with 55 to 200 repeats fall into the premutation category (unaffected, but the number of repeats can increase in their children, who can then be affected); and those with 200 or more repeats have the full mutation and Fragile X syndrome. In general, the symptoms of the disorder become more severe as the number of repeats increases.

To assist clinical diagnostic and genetic testing laboratories in accurately counting fragile-X repeat sequences, NIST has developed a new reference material that can be used as a check on test procedures and for quality control. SRM 2399, "Fragile X Human DNA Triplet Repeat Standard" consists of nine samples of DNA measured and certified by NIST for triplet repeats ranging from 20 to 118. The triplet repeat standard joins more than 50 reference materials produced by NIST for quality control in clinical testing.

Source: NIST

Explore further: Evidence mounts for quantum criticality theory

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Galaxy dust findings confound view of early Universe

4 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

20 hours ago

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.