New Separation Technology With Carbon Dioxide Is Cleaner And Cheaper

Jul 05, 2004

Researchers of Wageningen University and Research Centre in the Netherlands have developed a new clean, process to isolate valuable or undesired components from solids, such as components for food products. In contrast to other conventional processes, the new invention concerns a continuous process that can be controlled easily and secondly, leads to higher extraction yields.

Many odours and flavours are extracted from plant tissues by dissolving in organic solvents, such as hexane and alcohols. Subsequently, the solvent is evaporated after which the target components remain as pure product. From an environmental point of view and regarding food safety, the use of organic solvents is not always desired.

In the new process, which is developed in the framework of an European Union project C-REX, carbon dioxide is used as a solvent. In this process the carbon dioxide is compressed extensively, which gives it properties that are comparable to both solid and liquid, i.e. the so-called supercritical phase. The application of compressed carbon dioxide instead of organic solvents results in a cleaner extraction process. Carbon dioxide is a gas that is abundantly available in the atmosphere.

Some industries already apply compressed carbon dioxide to remove, for example, caffeine out of coffee or to extract flavours from hops for the production of beer. The Dutch researchers of Agrotechnology & Food Innovations, part of Wageningen UR, are the first to make this a continuous process. As a result, the separation process is strongly simplified. Besides that, in relation to other methods, the yields can be much higher, which leads to lower energy consumption and carbon dioxide loss and also, to reduction of processing costs.

In the new, continuous process an extruder is implemented. This machine, which can be roughly described as two rotating screws in a metal tube, is normally used for mixing and shaping of plastics and food products. The Dutch researchers have adapted the machine in such a way that it can be employed as a high-pressure vessel in which the continuous extraction can take place. The high pressure is maintained by creating two material plugs in the beginning and end of the extruder. In between, the compressed carbon dioxide is added, taking up the desired (or undesired) components. Next, the researchers separate the dissolved product from the carbon dioxide by decreasing the pressure after which the carbon dioxide is re-used and the pure product remains as solid or liquid.

The developed process can also be applied for the purification of materials, such as plastics. Next to that, the new technology can be utilised as a new production route for foams in the plastic and the food industry.

Source: Wageningen University and Research Centre

Explore further: Google DeepMind acquisition researchers working on a Neural Turing Machine

add to favorites email to friend print save as pdf

Related Stories

Formula could shed light on global climate change

1 hour ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

Coming up for air

Oct 29, 2014

Sometimes you've got to hit bottom to battle your way back up. In 1992, the United Nations cited Mexico City as having the worst air quality in the world, with so much pollution that birds sometimes dropped ...

Toward a networked energy future

Oct 29, 2014

February 1, 2050, is a good day for German electricity consumers. The breeze off the north coast is blowing so strongly that offshore wind farms and the wind turbines on land are running non-stop. Since it's ...

Recommended for you

What's causing the recent string of data breaches?

1 hour ago

It's Cyber Security Awareness month, which has me wondering: are we doing all we can to protect our data? To help answer this question, I sat down with Girish Bhat of Wave Systems—an important collaborator of Micron's—to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.