Why is the helix such a popular shape?

Feb 18, 2005

Perhaps because they are nature's space savers

Something about nature loves a helix, the ubiquitous spiral shape taken on by DNA and many other molecules found in the cells of living creatures. The shape is so useful that, while researching the means of creating self-assembling artificial helices, physicists at the University of Pennsylvania believe that they have come across a plausible mathematical reason for why the helical shape is so common. Their findings appear in the Feb. 18 issue of the journal Science.

"The classic answer is that helices are helical because the shape is dictated by bonds between molecules. But that only answers how a helix is formed and not why they are that shape," said Randall Kamien, a professor in Penn's Department of Astronomy and Physics. "It turns out that a helix, essentially, is a great way to bunch up a very long molecule, such as DNA, in a crowded place, such as a cell."

In the dense environment of the cell, long molecular chains frequently adopt ordered helical conformations. Not only does this enable information to be tightly packed, as in DNA, but it also forms a surface that allows molecules, such as the machines that enable DNA transcription and repair, to grapple on to it at regular intervals.

To picture how space matters to the formation of helices, Kamien and graduate student Yehuda Snir envisioned the system as a flexible, unbreakable tube immersed in a mixture of hard spheres, analogous to a molecule in a very crowded cell. As they saw it, the space occupied by the tube is space that could be otherwise occupied by the spheres. They find that the best shape for the short flexible tube Ц the conformation that takes the least amount of energy and takes up the least space Ц is that of a helix with a geometry close to that found in natural helices.

"It would seem that the success of the helix as a shape in biological molecules is a case of nature working the best it can with the constraints at hand," Kamien said. "The spiral shape of DNA is dictated by the space available in a cell much like the way the shape of a spiral staircase is dictated by the size of an apartment."

Source: University of Pennsylvania

Explore further: Unique entry complex discovered at Herodian Hilltop Palace

add to favorites email to friend print save as pdf

Related Stories

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Engineering the Kelpies

Aug 27, 2014

Recently, Falkirk in Scotland saw the opening of the Kelpies, two thirty metre high horse head sculptures either side of a lock in a new canal extension.

Competing forces coax nanocubes into helical structures

Aug 11, 2014

Nanocubes are anything but child's play. Weizmann Institute scientists have used them to create surprisingly yarn-like strands: They showed that given the right conditions, cube-shaped nanoparticles are able ...

Recommended for you

Ancient clay seals may shed light on biblical era

Dec 20, 2014

Impressions from ancient clay seals found at a small site in Israel east of Gaza are signs of government in an area thought to be entirely rural during the 10th century B.C., says Mississippi State University archaeologist ...

Digging up the 'Spanish Vikings'

Dec 19, 2014

The fearsome reputation of the Vikings has made them the subject of countless exhibitions, books and films - however, surprisingly little is known about their more southerly exploits in Spain.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.